symbols and relationships are manipulated

ART

ICLES

Using an expert system
for design diagnosis
and design synthesis

Abstract: This paper describes the concepts which allow an expert system to be
used for both design diagnosis and design synthesis. An example of the implemen-
tation of these concepts is presented in the domain of preliminary design of domestic
kitchens in the expert system PREDIKT. PREDIKT carries out both design
diagnosis and design synthesis using the same knowledge base and utilises an exisi-
ing expert system shell which has forward- and backward-chaining capabilities.
The significance of graphical interaction with expert systems in design domains s

demonstrated.

RIVKA

OXMAN
JOHNSs.
GERO

Architectural C omputing
Unit

Departmen of
Architectural Science
The U niversity of
Sydney

NSW 2006

Australia

1. Introduction
1.1 Design as a problem—solving paradigm

he design process has been frequently

modelled as a recursive interaction of

the activities of analysis, synthesis and

evaluation. During the development of

a design, the progress towards a
solution is achieved by generating new states
from current ones. Such problems in which infor-
mation is accumulated during the process of
solution are representative of the class of prob-
lems which have been referred to as “ill-defined
problems” [1]. Design can be interpreted in a
State-space representation as an initial state
which is transformed using expert knowledge
into a series of solution states. Within this
conceptual framework, problem-solving can be
S€en as a process of searching through alternative
solution states which satisfy cerrain goals.
Design, therefore, shares many characteristics of
general problem-solving processes. The
behaviour of designers in a process which
incorporates automated problem~solving
techniques has been studied by Akin [2]. From
this model of design we can extract several kinds
of problem-solving activities to support this
process in a computer-aided design environ-
ment.

1.2 Knowledge engineering and
expert systems in design

Knowledge in design may be thought of as the
ool whereby the designer conceptualises the
semantic content of a certain domain and by
which he represents his ideas about that domain
as the syntactical relations between symbols

(control knowledge). Knowledge can be de-
scribed symbolically as well as mathematically. A
knowledge-based view of design intends to
render the knowledge through which design soly-
tions are generated explicit and amenable to the
process of computation. Knowledge engineering
is a field which deals with the building of
knowledge-based programs. Expert systems are
a branch of this larger area of knowledge
engineering; they deal with the development of
programs which simulate the behaviour and
incorporate the knowledge of rational human
experts in a specific domain and tend to operate in
an interactive manner with users,

This paper discusses the application of
knowledge engineering and expert systems
techniques in design. The specific domain of
application is that of architectural design.

1.3 The traditional role of expert systems

Expert systems which have been developed in
other domains contain features which provide
directions for the development of expert systems
for design. The knowledge incorporated within
an expert system consists of facts and heuristics.
The facts constitute the body of information and
the heuristics are methodological statements and
the rules of good guessing which together
characterise expert level decision making within
the field. The traditional role of expert systems in
well-circumscribed domains has been that of a
diagnostic tool. Waterman [3] has provided a
detailed description of a variety of expert systems
and their applications, very few of them are
related to design or even have a design component,
Of those listed XCON (also known as R1) [4]
appears to be the only one in continuous commer-
cial use. It is only now that expert systems
technology is being examined for its general
applicability in the domain of design. In the sub-
sequent sections, we shall elaborate upon the
technical aspects of various approaches and dis-
cuss their relevance to design, in general, and to
architectural design, in particular.

2. Expert systems in design synthesis
and design diagnosis

Two approaches for the application of expert
systems in the design process will be considered.

1. Design Synthesis: the expert system is
capable of design generation.

2. Design Diagnosis: the €xpert system can
function as a design critic to evaluate,
criticise and recommend corrections in
design.

In both modes of operation solutions are
generated before they are analysed and evaluated.
In any expert system one of the key factors in its
construction is the separation of the knowledge
base and the control mechanism. Both the way in
which knowledge is represented and the way in

which it is applied in the inference mechanism

(domain knowledge) and actions by which these must, in design application, recognise the
Expert Systems, February 1987. V. 4, No. 1.

sign paradigms.

2.1 Expert systems in design synthesis

In the automated process of design synthesis,
design is treated as a search through a space of
solution states. New design states evolve through
a process of analysis, evaluation and regener-
ation. Generation is achieved through the firing,
or instantiation, of a set of transformational rules,
where an initial state js transformed to a sub-

selected by the human designer. Trans-
formational rules encode knowledge about how
to generate a new state from a current state, this is

ow partial solutions are generated as in B.
Constraints prevent the execution of one rule and
another rule comes into play as in C,

One of the first attempts to represent design
knowledge (implicitly) according to such a ruje—
based conception is known as shape grammars [5].

recursive nature and the multiple modes of de- Design knowledge is represented by syntactical

transformational rules for the manipulation of
formal patterns. The shape grammar deals with
shapes represented by line segments, symbols
and labels; the elements and the set of trans-
formational rules relevant to a particular design
sub-domain, such as a formal style, constitute
syntactical grammar. The control mechanism for
the generation of solutions in such systems is

own as ‘default control’ of forward-chaim'ng
and back~tracking. The mechanism generates a]]
solutions exhaustively from the initial state to the

Design obviously deals with another broad
area in addition to that of syntactic operations.
One of the characteristics of architectural design
is that of being problem solving in a semantically
rich task domain [6]. Syntactic aspects of shape
srammars could be extended into a multi—
attribute design vocabulary — a type of system
which would include the semantic as well as the

>

partial solution state

™

£ constraint

O

D final state

Figure 1. Transformational rules generate designs by transforming an initial staze
through partial solution States to a final siate which is the design

Expert Systems, February 1987, Vol 4, No. 1.

syntactic representation of design knowledge.
The semantic representation of design knowl-
edge provides a potential basis for both the
organisation of design knowledge, as well as for
the definition of goals, or the provision of control
in search procedures. A linguistic paradigm of
design has been discussed by Gero and Coyne [7].
Design rules can be written which are made up of
facts about objects and their relationships. The
semantic aspects of a design domain can be
represented as goals which are the attributes of
the objects in their final, or desired, state. In such
a manner we can potentially limit the search by
using a goal-directed, backward-chaining
strategy in which the system knows what kinds of
knowledge or actions are necessary in order to
achieve specific goals. This appears to be one of
the ways used by the human designer to reduce
the theoretically large problem space to a
manageable size.

Semantic rules at a level of abstraction can
become a default paradigm for planning which
deals with the selection and ordering of syntactic
design rules. These create states at a higher level
of abstraction than that at which more ‘simply
motivated’ syntactic design executor rules
operate. Various paradigms of planning
demonstrating control strategies as a multi-leve]
process in design have been demonstrated by
Gero and Coyne [8].

2.2 Expert systems in design diagnosis

Another possibility for the application of expert
systems techniques in the process of design is to
consider the expert system as a design critic. This
approach is analogous to that of a diagnostic
expert system where the design critic tries to
diagnose the faults of a design, given a descrip-
tion of the design goals. The user constructs a
design and the System, containing the evaluative
rules of a certain domain, checks the design as it
proceeds, makes recommendations for improve-
ments, and carries on a dialogue with the user.

2.3 Expert systems for both design synthesis
and design diagnosis

A synthetic approach to the application of
knowledge engineering techniques to the design
process would be to implement both of these
approaches and to integrate them in a system
which would operate equally well as an expert
system in either mode. Such an integrated
approach requires the implementation of both
generative and evaluative rules at different design
levels (or stages) within the same knowledge base
and the use of the control mechanism at different
levels of abstraction.

Implicit in such a system is the emphasis upon
the importance of a capability for constructing
partial design solutions. Partial solutions, once
generated, can be evaluated against criteria or
desired attributes and provide the context to
guide the search and to complete the design
solution. This method can procedurally limit
combinatorial explosion. Furthermore, in any
design session, learning through and about the

process which generates partial solutions has
value; it can be used to modify, or refine, the
initial statement of goals.

The aim of this paper is to discuss three
primary methodological issues in the design and
implementation of such a system.

(semantic)
(syntactic)

1.The conversion of textual
representation to graphical
representation and vice versa.

2. The provision of input and response by
graphic as well as textual means within the
traditionally interactive nature of the expert
system dialogue between user and system.

3. The use of the same knowledge base for both
design synthesis and design diagnosis and
for bringing partial solutions to the state of
completed designs.

3. Graphical interaction

Designers express their thoughts, concepts and
designs both verbally and graphically. An intelli-
gent system for design in a computerised environ-
ment should provide the means to map between
both sets of communication. In order to
accomplish this, a semantic model must be
constructed which is capable of recognising
the attributes of the geometric description
of objects and their relationships.

Conversely, the geometric model must be
capable of following semantic descriptions and
operations. Both methods of manipulating ideas
and knowledge are characteristic of the way in
which designers work during the process of
design. Sketching in design, and particularly in
architecture, offers an exploratory medium
through which attributes of the design emerge
which were not previously anticipated.

3.1 Semantics from graphics

The process of analysing design states and
generating new ones must be achieved by extract-
ing semantic information from geometric input.
Graphical interaction can generate a database of a
geometric model based upon syntactic relation-
ships between shapes or other entities, These
syntactic relations can be converted to semantic
relations which create a dynamic facts base in the
system’s knowledge base. The system can then
apply its knowledge, using the inferred semantic
information to select actions for generating solu-
tions or for diagnosing the design.

3.2 Graphics from semantics

Graphical models must be able to be constructed
from the semantic descriptions which make up
the textual dialogue between the user and the
€xpert system. When interaction with an expert
system is based upon a textual dialogue, a
semantic facts base can be derived from queries
made by the system of the user. The system
should infer attributes from this information in
order to instantiate attributes which are, in turn,
interpreted as a set of syntactical relationships

Expert Systems, February 1987. Vol. 4, No. 1.

between objects which can then be used to
generate graphical constructs. In this manner,
the system simultaneously produces from the
facts base the definition of the solution state of the
design problem, a goal state which is expressed
semantically and converts this to a goal state
which can be executed by syntactical operations
and displayed graphically. Clearly, knowledge
which provides the mappings between semantics
and graphical syntax needs to be specifically
provided to the system.

3.3 Procedural knowledge and
declarative knowledge

Representations of knowledge can be both
procedural and declarative. Prolog [9] offers a
ready means to achieve both forms of represen-
tation. Logic programming provides a rich
medium with which we can represent object
attributes, and through which we can write rules
incorporating these attributes in an inference
process. When semantic goals have to be inter-
preted, procedural knowledge is utilised to set up
a graphic display. When syntactic relations
between shapes is set, declarative knowledge can
be employed to interpret semantic content from
an existing display.

Graphical images are usually interpreted
semantically by humans; there is no concern with
the process used to produce the image. A
graphical image is a declarative representation.
When using a computer to produce a graphical
image, procedural processes and representations
must be used. This difference between the image
and the means of producing it is of fundamental
importance because it defines the mappings
which are required to interpret and produce
graphics. It also means that a computable
semantic model of the screen graphics needs to be
kept. This has been one of the difficulties in using
traditional CAD systems since they store their
models syntactically in the form of data and pro-
cedures. The semantics syntax and
syntax semantics transformations are
fundamental to any interactive graphics interface

p——

—

to a design expert system.

3.4 Types of knowledge

Design processes involve trial and error in order
to produce successive states of a design solution
for consideration. The description is a record of
decisions which express the current state of the
design. This process requires mappings between
various kinds of models. For example, in
architecture, there will be mappings between a
geometrical model, an architectural model and a
performance model [10]. In a manual design pro-
cess, the designer rapidly executes, interprets
and evaluates according to his or her own
informal mental models. Knowledge-based
programs can provide expert assistance in such

esign processes by mapping between generation
and its interpretation or evaluation.

Three types of knowledge are significant in a
design expert system, (Table 1). The first of
these, syntactical knowledge, here deals with the
connection of an object with its domain or other
objects and with the data which supports facts. It
is not concerned with the meaning of an object
and its attributes. For example, when a designer
locates a window in a wall graphically, syntactical
knowledge is used to find the horizontal and
vertical distances from the boundary of the wall.
In design, such knowledge aims to maintain the

consistency of the database of geometrical
descriptions.
The second type of knowledge is semanzic

owledge which is concerned with the meanings
of objects and here deals with the relationships
between objects and between their attributes.
Design rules can be specified which generate
relationships and attributes, Predicates which
generate facts about relationships between
objects may include:

— positional relations —
sink”;

—relations of inclusion —
wall”;

— comparative relations — “west wall is short”;

— relations which define a ratio of states — “area
of kitchen has a proportion between length
and width”;

—and so on.

“window is above

“window is in north

Table 1. Types of knowledge needed in a design expert system

Type Definition Example
Syntactical Knowledge which maintains the If rightmost vertex of object A is
knowledge connection of the object with its [X4,Y,,Z,] and leftmost vertex
domain and with other objects; of object Bis [Xp,Yy,Z,] then
often geometric in nature for physical distance between A and B is
V(KX + (Y, Yo +(Z,-Z,)0).
Semantic Knowledge concerned with the If area of window is greater than
knowledge meanings of objects: normally 15 per cent of area of floor then
deals with relationships between light is sufficient.
objects and between their attributes.
Evaluation Knowledge to interpret a design in Knowledge driven procedural

terms of implicit attributes.

programs.

\

Expert Systems, February 1987. Vol. 4, No. 1.

Design which is generated according to rules
may be interpreted through models of per-
formance. Therefore, specification of rules for
interpretation is necessary in order to encode
relevant knowledge which can be used for
evaluation. Hence, the third type of knowledge is
performance or evaluation knowledge. It is the
evaluative knowledge which is used to check the
validity of a state solution against the system’s
knowledge base of performance requirements.
For example, an evaluative rule can check the
relevant properties of a window (dimensions,
location, material, etc) and calculate other
associated factors, such as lighting and
ventilation, according to the domain specific
codes and requirements.

The utilisation of these three types of
knowledge and their significance in the operation
of such an expert system for design can be
demonstrated by a typical predicate of the
system.

check—execute:
locate object
generate facts
interpret (find ‘the approval of the object’)

locate object:
execute and display the syntactical relations
between entities of an object
generate facts:
produce semantic relations between objects
interpret:
check the validity of a design solution against
rules in the system’s knowledge base

Designers make use of all three classes of
knowledge and apparently utilise morphisms
between them which change their function.
Thus, performance knowledge at one time be-
comes a goal set whilst at another time it becomes
part of a constraint set. Syntactical knowledge is
used both to generate designs and to check gener-
ated designs, and so on. This richness in know-
ledge utilisation makes the domain of design par-
ticularly interesting.

4. An expert system for the preliminary
stages of design of a kitchen

A system, PREDIKT (PREliminary Deslgn of
KiTchens), which elaborates the issues raised in
the last section is described. PREDIKT is
employed as a design synthesiser and critic in the
preliminary stages of the design of a domestic
kitchen. The development of this system is con-
cerned with the following points:

l.the system provides several modes of
interaction between the user and the system;

2. the system employs the same knowledge
base for both design synthesis and design
diagnosis; and

3. the system converts semantic representation
to graphical representations and vice versa.

The present version of PREDIKT runs on SUN
Microsystems workstations, is written in Quintus

1. a stand-alone expert systems shell, BUILD
(11];

2.a kn’owledge base in the form of design rules
related to the domain of kitchen design; and

3. the system converts semantic representation
to graphical representations and vice versq.

4.1 The expert system shell: BUILD

The shell, BUILD, contains the fundamental
components of an expert system: an interface
facility; an inference mechanism; an explanation
facility; and a state description — these are
described in Table 2. BUILD is written in Prolog
and has interfaces to Prolog, other languages and,
hence, graphics.

4.2 Design rules as a knowledge base

Knowledge about the spatial characteristics and
layouts of elements in design domains such as the
kitchen are found in a variety of sources. The
most common of these are books in the form of
general design guides for use in the initial stages
of architectural design — the programming and
planning stages. These books provide spatial
standards and other useful information such as
description and sizes of activities and equipment,
ctional requirements and recommendations
for ideal relationships between elements. They
may provide standard or critical dimensions for
functional elements and provide neces
ergonometric data, as well as hints based on
experience and good design practice. This infor-
mation may come in the form of tables, diagrams,
flow diagrams of relationships or activities, or in
the form of alternative and recommended plan
layouts. Design rules attempt to encode ex-
periential and phenomenological knowledge in a
formal and structured way. Knowledge accumu-
lated from experience as a designer results in
heuristics. Heuristics enable the designer to focus
quickly on important facts of existing conditions
and to match through knowledge the appropriate
patterns and elements which fit the needs of the
design requirements and the design goals.

Such knowledge and experience, once
organised, can be encoded in a production rule—
based formalism. The resulting system can thus
utilise the knowledge of human design experts as
the basis for the design and composition of
architectural plans. The knowledge base of the
kitchen design expert system contains such rules.
Rules are built using an object-attribute—value
approach. Each object is inferred by a pre-
processor and its attributes determined. Consider
the following rule:

i

‘size of kitchen room’is__ ‘small’

then

‘shape of counter’is__‘straight counter’,

Within this rule, the relationship between object,
attribute and value js as follows:

attribute
size

value
small

object
kitchen room

Prolog and consists of three basic subsystems: counter shape straight
Expert Systems, February 1987. Vol. 4, No. 1.

Table 2. Fundamental components of the BUILD shell

Component

Description

Interface facility

Provides for dialogue between the designer and the shell.

Dialogue is in a restricted English. Provides for mouse input
and windowing capabilities.

Inference mechanism

Carries out reasoning tasks which control the strategy of the

shell’s execution. It supports both goal driven and data driven
processes. In the data driven mode, the given data can be used to
infer all that can be inferred or can be restricted to specified topics.

Explanation facility

The shell interacts with the knowledge base and the inference

mechanism to explain why an answer is needed at a particular
point during the session, or how a question can be answered.
The querying strategy elicits the required information from the
user ina ‘top down’ mode. The user then can give information
ata high level of abstraction. The user can ask the system either
‘how’ or ‘why’ questions. ‘How’ directs the system to search for
knowledge needed to satisfy the request. ‘Why’ directs the system
to provide an answer within the context of a set of rules, and
within the framework of the question currently being asked.
The shell can explain how a certain conclusion was reached, or
explain why a specific conclusion could not be reached.

State description

The shell can display the facts which have been found to be true

or false during a particular session. These facts which may have

been inferred durin

base, can be either
of a session.

g a session and entered into the dynamic facts
completely or partially removed at the end

Rules may incorporate variables. For example:
if
‘area in sq metres’is A and
‘width in cm’ is W and
‘length in cm’ is L
then
A is W * 1./10000.

The process of determining specific values for
attributes which are stored in the dynamic facts
base can be accomplished in a number of ways:
through an interactive dialogue with the user; by
selecting an object from a menu and interpreting
its attributes from a graphic display; or through
an inference process.
Typical rules from the knowledge base are
listed below:
if
‘area of kitchen in sq m’ is_ greater _than
30.0 and
‘width of kitchen in cm’ is__greater_than
210 and
‘length of kitchen in cm’ is I and
‘acceptable dimensions’
then
‘classification of kitchen size’ is_large
i
‘location of window’ is__‘in corner’ and
‘length0 of window in cm’is_ greater than
140. -

then

if
‘number of windows’ is 1 and
window is__on Walll and
‘long wall has window’ and
shape is _‘straight wall’

then
window share_ wall _with counter and
counter is__on Walll

In this system all control knowledge is vested in
the expert system shell.

4.3 The Semantic Interpreter

The design rules which are related to the domain
of residential kitchen design are encoded as
previously described. Between the knowledge
base and the graphics display is a semantic
interpreter, (Figure 2). The purpose of the
interpreter is to convert graphics to facts and vice
versa.

The general conversion transformation is of
the form

semantics = t (syntax)

or syntax = ¢’ (semantics)
where t and t’ represent the knowledge needed to
carry out the transformation. (In certain logic
programs t and t’ are homomorphic and repre-
sent forward and backward deduction processes.)

When the user displays ideas graphically, the
system converts the syntactic relations between
objects to facts which can be checked against the
rules in the knowledge base. This is used in the

‘size of window is big enough’ process of diagnosis when the system is operating

Expert Systems, February 1987. Vol. 4, No. 1.

10

Figure 2. Data flow in PREDIKT

as a design critic and analysing design decisions
which have been made. Consider the following
simple example. The designer wishes to input the
plan information of the kitchen graphically. This
can only be performed syntactically by specifying
the x- and y—coordinates of two opposing corners
of the plan (assuming it is rectangular) usually by
pointing with a mouse. If these two corners have
coordinates (X,, Y,) and (X3, Y,) then t can be
written in Prolog as

locate area:
D, KXZ — X,
D,isY,—X..
draw area (D,, D)),
assert (length of kitchen is D,),
assert (width of kitchen is D),
assert (area of kitchen is_ﬁx*’by).

Expert Systems, February 1987. Vor. 4, No. 1.

This transformation results in three semantic
facts being asserted. Other transformations may
be considerably more complex than this example.

Alternatively, when the user describes ideas
and defines goals textually, the interpreter con-
verts semantic relations and displays the resultant
syntactic relations of elements graphically. This
mode of operation can be employed in the process
of design synthesis when the system operates as a
generative system.

44 Backward-chaining and forward—chaining
operations on the knowledge base

Backward—chaining as goal chaining

The following_ example of PREDIK T’s operation
illustrates this mechanjsm. The goal of this

example is to determine an appropriate shape for
the kitchen counter. Attributes in the knowledge
base represent properties such as the size of the
room and the location of activities and equip-
ment. PREDIKT infers the recommended shape
of the kitchen’s counter from available alterna-
tives. Backward-chaining identifies the needed
attributes as subgoals and other rules are
examined to conclude values for this subgoal,e.g.
size of kitchen, functions and type of movement
in the kitchen. The results are passed forward
and conclusions are drawn about the main goal.
Occasionally PREDIKT will request infor-
mation from the user, such as “What is the
desired area of the kitchen?” That is, the values of
attributes can be established in any session by
various processes depending on the mode of
PREDIKT’s operations: by inference from other
rules; by querying the user in a design dialogue;
or by interpreting the information in the current
state of the design as displayed graphically.

A typical goal chaining tree is shown in Figure 3.

Forward-chaining as generation

In forward-chaining, the rules are examined to
determine whether or not they are applicable,
given the information on hand. When executed,
this is equivalent to generation in a state-space.
Given a floor area of a specific kitchen, the system
can examine all of the possible solutions for
different types of movement and activity, and can
propose alternative counter shapes for kitchens of
the same area. A typical forward-chaining fact
tree is shown in Figure 4.

Figure 3. Goal chaining tree

Figure 4. Forward chaining (data driven) as generation in a state-space

11

Expert Systems, February 1987. Vol. 4, No. 1.

CHECKING THE DESIGN

‘A TYPICAL DESIGN SESSION

AREA FOR DIALOG BETWREN

_ EXPERY SYSTEM
AND FACTS BASE

GRAPHICAL INTERACTION

GRAPHICAL DISPLAY

light is sufficient

PR,

e e

approval of kitchen window

*k PPy

.

.

Figure 6. Par: of a text script during a design diagnosis session.
Ttalics are added comments

12 Expert Systems, February 1987. Vol. 4, No. 1.

5. Graphic interaction

Three modes of interaction are possible between
the designer and PREDIKT:

Design diagnosis: the designer uses PREDIKT
to check a completed design described
graphically;

Design development: the designer develops a
partial design, has it checked by PREDIKT,
and then interacts with- it to generate a
completed design which satisfies the implicit
constraints from this partial initia] state; and

Design generation: the designer interacts with
PREDIKT from the beginning of the design
process and generates a completed solution
utilising the knowledge in PREDIKT as goals
and constraints.

Figure S shows the screen during a typical design
session. The left-hand window js for text input
and output whilst the right~hand window is for
graphic input and output,

5.1 Design diagnosis

In design diagnosis the designer describes the
design entirely graphically (using the graphic
window in Figure 5). The semantics implicit in
the graphics are interpreted as facts and placed in
the facts base. PREDIKT now checks the design
i i i facts base using its
knowledge base. A typical diagnosis text script is
shown annotated in Figure 6, italics are
comments added later. In this session PREDIKT
checks the design as it proceeds,

5.2 Design development

Using PREDIKT during the development of the
design, the designer generates a partial design,
Figure 7, and uses PREDIKT first to check the
validity of this partial design in the same manner
as if it were a completed design as in section 5.1.

The designer then switches from graphic input
to text input and specifies goals to be met by the
completed design which builds on the partial
design shown in Figure 7. Thus the partial design
acts as a set of constraints on the design. Figure 8
lists part of the dialogue between the designer and
PREDIKT as the design is gradually completed
by the system. Bold indicates designer’s input
whilst italics are comments added later.

Figure 9 shows a screen dump of the graphics
window after PREDIKT has queried the
designer and decided on the location of the
counter.

5.3 Design generation

Figure 10 shows the screen during a session in
which PREDIKT generates the design from its
initial state. The system interacts textually with
e designer to reduce the size of the state space—
search. The right-hand window displays the
rules in the knowledge base currently being
instantiated. The middle window displays the
dialogue with the user. The bottom left window
shows the design graphically as it js being
generated. Above it is an information window,

 options for values are: L
- L shape or straight wall or U shape

T

B N

i

4&:ttﬁta*aqo;ﬁtodt&t&ttﬁgct;igtﬁt;&#co«#t;
" * counter is on north wall and east wall e

L LR T

SEER SRR EOR Y

Figure 8. Dialogue between the designer and PREDIKT as the partial design in Figure 7
is gradually completed by the system querying the designer when needed. Bold text indicates designer input,
stalics indicate comments added later

h

Expert Systems, February 1987. Vol. 4, No. 1.

13

L I \
utilise the same knowledge base for both design

A TYPICAL DESIGN SESSION
CHECKING THE DESIGN GRAPHICAL DISPLAY

AREA FOR DIALOG

BETWEEN -

EXPERT SYSTEM

AND

DESIGNER

Figure 9

- KNOWLEDGE BASE -

MENU DISPLAY
‘ L RULES -

| AREA FOR DISPLAY-
oFRuLEs
: KNOWLEDGE BASE.

AREA FOR DIALOG
BETWEEN EXPERT Svs"
AND FACTS BASE.
GENERATED VIA
GRAPHICAL INTERACTION

Figure 10.

6. Discussion

This system has demonstrated the applicability of
the expert systems technology to design
synthesis. Although the knowledge base is small,
under 100 rules, it shows that even a simple rule—
based approach begins to address elementary
configuration type design problems. Of particu-

checking and design generation using the same
€xpert system architecture.

The approach adopted here was to utilise a
stand-alone rule-based expert system shell with
both forward- and backward-chaining capa-
bilities. The shell was integrated as a module into
a graphic environment. Such an approach has the
advantage of minimising the development time.
The effort is primarily in acquiring the knowl-
edge and in constructing the semantic inter-
preter. However, the shell must have directly
accessible forward and backward chaining con-
trol if the same knowledge base is to be used for
both design diagnosis and design synthesis. The
knowledge base developed here was for design
synthesis by element configuration. The same
system architecture should be capable of design
synthesis by generation [7].

Some of the lessons to be learnt include the
need for much better modelling of the design
semantics. Rule-based knowledge bases are weak
in this area and need to be supplemented by
better methods of modelling. Currently, BUILD
is being supplemented by a frame-based
semantic modelling system which addresses this
issue [12]. The present approach is satisfactory
where the design domain in state-space terms is
relatively small. When the domain becomes
large, additional control knowledge generally in
the form of planning knowledge is needed [13].

Expert systems allow a designer, working in a
well-defined domain, to adopt a variety of
approaches to the final generation of a design —
ranging from full manual generation with auto-
mated checking, through partial manual
generation with the system completing the
design, to having the system carry out the entire
design.

7. Acknowledgements

This work is supported by grants from the
Australian Computer Research Board and the
Australian Research Grants Scheme. The
prototype version of BUILD was Initially
developed on a machine kindly loaned by IBM
Australia Ltd. The technical assistance of Bala
Balachandran in particular and other members of
the Architectural Computing Unit is gratefully
acknowledged.

8. References

[1] A. Newell and H. Simon, Human Problem
Solving, Prentice-Hall, New Jersey, 1972.

[2] O. Akin, Models of Architectural Knowledge:
An Information Processing Model of Design,
i’g_}g Thesis, Carnegie-Melion University,

[3] D.A. Waterman, A Guide 1o Expert Systems,
Addison—Wesley, Reading, Massachusetts,
1986.

[4]]. McDermott, ‘R1: a rule-based configurer
of computer systems’, Artificial Intelligence,

lar significance is the ability of PREDIKT to 19, 1982, pp. 135-173.
14 Expert Systems, February 1987. v, 4, No. 1.

[5]1 G. Stiny, ‘Introduction to shape and shape
grammars’, Environment and Planning B, 7,
1980, pp. 343-351.

[6] H.A. Simon, The Sciences of the Artificial,
2nd edition, MIT Press, Cambridge, 1981.

[7] J.S. Gero and R.D. Coyne, ‘Logic program-
ming as a means of representing semantics in
design languages’, Environment and Plan-
ning B, 12, 1985, pp. 351-369.

[8] J.S. Gero and R.D. Coyne, ‘Knowledge-
based planning as a design paradigm’, Pre-
prints, IFIP Working Conference on Design
Theory in Computer-Aided Design, Univer-
sity of Tokyo, 1985, pp. 261-295.

[9] W.F. Clocksin and C.S. Mellish, Program-
ming in Prolog, Springer-Verlag, Berlin,
1981.

[10] W.J. Mitchell, The Logic of Architecture,
Prentice-Hall, New Jersey, (in press) 1986.

[11] M.A. Rosenman, BUILD: User's Manual,
Architectural Computing Unit, University
of Sydney, 1985.

[12]].S. Gero, M.A. Rosenman and C. Manago,
‘A model-based expert system shell’,
IAAIC86, Melbourne, (to appear).

[13] R.D. Coyne and].S. Gero, ‘Semantics and
the organization of knowledge in design’,
Design Computing, 1, 1, 1986, pp. 68-89.

About the authors
Rivka Oxman

Rivka Oxman is currently a researcher in the
Architectural Computing Unit in the University
of Sydney, on leave from the Israel Institute of
Technology — Technion. She received her
Bachelor of Architecture and MS in architecture
from the Technion. Prior to joining the Technion
she practised architecture for ten years. Her
research work is on knowledge-based design
systems in architectural design. She is particu-
larly concerned with incorporating the semantics
of designed objects into knowledge-based sys-
tems.

John S. Gero

John 8. Gero is Professor of Architectural Science
and Director of Research for the Architectural
Computing Unit in the University of Sydney. He
received his Bachelor of Engineering from the
University of New South Wales and his Master
and PhD in architecture from the University of
Sydney. He has been a Visiting Professor at
Columbia University, Strathclyde University
(Glasgow), National Institute of Applied
Sciences at Lyon and University of California at
Los Angeles and has lectured at over 120 univer-
sities and research institutes. He has held
research positions at University of California at
Berkeley, MIT and Harvard University. His
research is concerned primarily with knowledge—
based design systems and his current work
includes developing interactions between expert
systems and commercial CAD systems, genera-
tive design systems, machine learning in the
domain of designs and knowledge-based systems
which formulate design systems. He is the co—
author/editor of eight books including Knowledge
Engineering in Computer—-Aided Design and Expert
Systems in Computer-Aided Design (to appear),
and over 150 papers. Professor Gero is on the
editorial boards of numerous journals including
Design Computing, Artificial Intelligence in
Engineering and Artificial I ntelligence in Engineer-
ing Design and Manufacture.

\

Expert Systems, February 1987. Vol. 4, No. 1.

fs

I¥d

15

