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Abstract. This paper commences by discussing some of the difficulties involved in the process 
of automatic verification of designs from CAD databases. The main focus of the paper is to 
describe and demonstrate an approach to the development of a knowledge-based integrated system 
which is capable of verifying a design through its description in a CAD database for conformance 
with some specified requirements. IPEXCAD, an early version of such an integrated environment, 
is described in terms of its architecture, implementation and operation issues. The system is 
illustrated by an application in building design. 

INTRODUCTION 

In the various disciplines of design, such as engineering, architecture, drawings are the 
medium through which decisions are communicated. A designer uses drawings to represent 
symbolically designed objects and their configurations in space. Furthermore, graphical 
representations are used to illustrate the different alternatives available at any stage of a 
decision making process and to aid in the evaluation of the outcome of these decisions. 
Commercially available computer-aided drafting (CAD) packages are widely used by design 
professionals. Such computer-aided drafting packages provide designers with powerful and 
flexible facilities for creating and modifying a graphical representation of their design 
descriptions. A CAD system stores a design description produced by a designer in its 
database in terms of drawing elements. Such a database only contains syntactic relationships 
among those drawing elements. Therefore, one major limitation of such CAD systems is that 
they do not possess the capabilities to interpret the contents of a drawing as human designers 
do. 

The verification of a design is the process of checking the completeness, consistency 
and correctness of the design against given sets of requirements. Such requirements may be 
of many different types, such as those given by design codes and may come in the form of 
clauses, heuristic rules, tables, diagrams, graphs and mathematical equations. Verification of 
a design from its computer representation in the form of a CAD database is a knowledge 
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intensive task which requires semantic interpretation of the CAD database and the 
representation and manipulation of the design verification knowledge. Advances in artificial 
intelligence have led to the emergence of expert systems which explicitly represent the 
knowledge of human experts in some specific domain and apply this expertise to the problem 
solving process (Bobrow et al., 1986; Waterman, 1986). Expert systems are capable of 

representing and using the design verification knowledge in an explicit manner. The semantic 
interpretation of a CAD database is the process of transforming the syntactic relationships in 

the CAD database in accordance with the semantic relationships in the expert system's 
knowledge base. 

One major problem involved in this approach is the mapping of syntactic information 
stored in the CAD system's database to the semantic information contained in the expert 

system's knowledge base. The syntax to semantics mapping of a CAD database is a tedious 
and domain dependant task which requires extensive domain knowledge. We use the notion 

of design prototypes to represent the domain knowledge as a set of abstractions which are 
used by the expert system for conceptual knowledge and by the CAD database interpreter to 

search for information from the drawing database. Therefore in order to verify a design from 
its graphical representation, a system must be able to perform interpretations and knowledge 

processing tasks. 
Based on the needs and the nature of the design verification process, a conceptual 

architecture of an integrated knowledge-based CAD environment has been developed. The 
remainder of this paper describes the motivation, issues and design of the system with an 

emphasis on the problems encountered and techniques used. 

BACKGROUND 

Interactive computer graphics has attained considerable importance in computer-aided design 
and manufacture. Designers make their decisions with the help of computer presentations in 
the forms of perspectives, plans, elevations, and so on. The task of preparing and modifying 
such drawings has been considerably simplified by various packages commercially available 
for computer-aided drafting. However, the major drawback with most such systems lies in 
the interpretation of the graphical entities created by the designer or their incorporation into 
other stages of the design process. Currently, in most systems, the mapping between the 
graphical representation and the designed artefact is made by a human designer. In such 
systems this is partly because the systems have no representation of the artefact created by 
the user other than its graphical manifestation on the screen and its syntactic model in a data 
structure in the database of the system. In order to expand the effectiveness of the 
relationship between the user and the computer, we need to incorporate knowledge about the 
underlying artefact so that the system can use that knowledge to derive meanings of design 

elements represented graphically. For instance, in building design, a building plan is 
graphically represented by a series of straight lines and some symbols. If the knowledge 
required to interpret that set of lines and symbols as walls, windows, doors, etc. were 
represented in the system, the system could enforce other properties such as topology and 

geometry during any operation. 
In the past significant efforts have been expended in developing integrated computer 
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systems for design applications. For example Lee (1977) describes an integrated system, 

called ARK-2, for architectural design. Hoskins (1977) presents an integrated interactive 
computer-aided design system, called OXSYS, for building design. More recently many 

design researchers have carried out work aimed at developing integrated systems for design 
applications utilising knowledge-based approaches. Rehak et al. (1985) and Fenves et al. 

(1990) present some approaches to developing integrated knowledge-based software for 
design applications. Jain and Maher (1987) discuss a number of possible ways of combining 
expert systems and computer-aided drafting techniques. Dym et al. ( 1988) presents a 
knowledge-based system for checking the Life Safety Code of the fire regulations. Tyugu 
(1987) describes the importance of merging conceptual and expert knowledge in CAD. 

Balachandran and Gero (1988) describe a model for building knowledge-based graphical 
interfaces. 

So far, existing integrated systems have been implemented using a tightly-coupled 

approach (Hoskins, 1977; Jain and Maher, 1987). That is, the systems know exactly what 
entities to expect from the graphics and the graphics system is tailored exactly to the 
knowledge in the system. Rehak and Howard (1985) put forward KADBASE as an approach 
to the integration of a distributed CAD system containing a variety of heterogeneous systems 

and design databases. This approach of advocating a flexible interface in which multiple 
expert systems and a variety of design databases communicate within an integrated system is 
the one pursued in this paper. 

Current CAD Systems 

Today's CAD systems can be broadly classified into three categories, namely general drafting 
systems, general modeling systems and domain-specific modeling systems. Drafting 

systems merely produce a graphic representation of whatever views of the design are drawn. 
There is no relation between elements in one view and those in another view. General 
modeling systems allow for the modeling of elements and assemblies of elements. The 
graphical representations are merely views of the one model. Information regarding the 
model can be entered or modified via any view (although some systems restrict this to the 
plan view only). Elements are created through drawings or macro-languages and are 

accessed through name-labels attached to them. In some systems other non-graphical 
properties, such as material, colour, and catalogue numbers may be associated with an 
element. In domain-specific systems the system has knowledge about a variety of types of 
elements within its domain as libraries of elements with various attributes. These elements 
may be of fixed geometry or parametric in nature. 

Expert Systems in Design 

In the past decade several expert systems have been demonstrated for design applications 
(Kostem and Maher, 1986; Gero, 1987a; Rosenman, 1990). While the advantages of expert 
systems are well documented for symbolic processing in logical inferences, they are not well 
suited to the computational processing involved in mathematics or graphics. They are also 

criticised for their shallowness and inability to reason beyond very limited scope. An 
important area of application of expert systems in design is that of engineering and building 
codes (Rosenman et al., 1986a; Garrett and Fenves, 1987; Sharpe et al., 1989). Complex 
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design codes are ideal application areas for expert systems since both users and developers 
often have difficulties with ensuring correct interpretations. 

THE VERIFICATION TASK 

Let us have a look at the problems, processes and knowledge involved in the verification 
task. In order to understand this task better we first describe the main properties of designed 
artefacts, namely function, behaviour and structure properties. 

Function, Behaviour, Structure 

A designed artefact may be described in terms of its function, behaviour, and structure. the 
structure description is a description of what the artefact is; the behaviour description, a 
description of what it does and how it does what it does; and the function description, a 
description of what it is for, i.e. its purpose. For example, the structure of a clock includes 
the parts from which it is made, their material, shape, dimensions, how they are joined, etc.; 
its behaviour (if it is an analog clock) is that its hands rotate with a periodicity matching the 
elapsing of time, pointing to marks on the dial to display this; and its function is to mark the 
time. 

Structure properties describe the form and physical properties of an artefact in terms of 

its geometrical and physical attributes, such as shape, dimensions, material, colour, etc. The 
behaviour properties of an artefact are emergent properties of the artefact given its existence 
and can be directly derived from its structure properties given that we have the necessary 
knowledge regarding these relationships. The function of an object, however, is a human 
determined property related to some human needs. There is no clear link from behaviour to 
function except through a human interpretation. Having said that, design is about the 
fulfilment of required functions through the creation of structures which exhibit behaviours 
which are recognized to be beneficial in producing these functions. 

Not only are these function, behaviour and structure attributes important in the 
description of designs, but also their relationships. Relationships exist between function and 
behaviour, between behaviour and structure, between function and structure and among the 
attributes themselves. 

Design Analysis and Evaluation 

Artefacts, through their existence, exhibit a multitude of behaviours, not all of which are 
relevant to some particular context. For example, we are not generally interested in the 
electrical resistance of a pencil or the fact that it makes a sound when we strike another 
object. However, we may indeed be interested in the latter behaviour in the context of 
tapping out a message. The selection of which behaviours to focus on depends on the 
context defined by the function to be satisfied. 

Given that we are operating in a certain functional context we will be interested in certain 
behaviours of any proposed design and that these behaviours achieve satisfactory levels of 
performance. These required levels of performance of the behaviours may be derived from 
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the function, if we have such relationships or else they may be directly prescribed by codes, 

rule of design, etc. The process of interpreting a design description to derive levels of 
performance of behaviour is the process of design analysis. The process of comparing these 

derived performance levels to the required levels is the process of design evaluation while 
the process of determining the cause of an unsatisfactory behaviour is the process of 
diagnosis and the process in which structures are derived from behaviours and functions is 
the process of design synthesis. Design verification includes the processes of design 

analysis and design evaluation and, this paper will concentrate on these processes as we are 
interested in evaluating the performance of a proposed design whose description is given by 

modeling it graphically using a CAD system. 

The Verification Task-An Example 

Let us have a look at the sort of verification task we may want to do. As an example let us 
take a verification task dealing with compliance with a building code. The building code in 
question is the Building Code of Australia, referred to as the BCA Code (AUBRCC, 1988). 
We wish to ensure that a design, described graphically using a CAD system, complies with 

the provisions of this code. Let us take an excerpt from this code, namely some of the 
provisions dealing with masonry construction. Following is an excerpt from the BCA Code 

itself: 

B2.3 MASONRY CONSTRUCTION 
B2.3(1 )  External wall thickness: Interpretation - For the purposes of this 

clause the combined thickness of the inner and outer leaves of a cavity wall 
shall be deemed to be the thickness of the wall. 

B2.3(2) Minimum thickness of external walls - The external walls of a 
building, if of masonry construction, shall be not less than 200 mm thick, 

except in the case of: 

(a) a Class 7 or 8 building; 
(b) a single storey building or the topmost storey of a multi-storey building 

where cavity wall construction is used and the combined thickness of the 
inner and outer leaves is not less than 190 mm; 

(c) a Class 10 building or garage, laundry, tool shed, closet or the like 
forming part of a building of another Class; or 

(d) a building subject to subclause B2.3(7). 

As we can see, Clause B2.3 applies to masonry construction; Subclause B2.3(1) is an 
interpretive provision explaining how to arrive at the thickness of cavity walls (double 
walls); while Subclause B2.3(2) deals with the required minimum thickness of external 
walls. Except for specified situations this minimum thickness is required to be 200 mm. 

Having a design of a building, our verification task consists of checking whether the 
above provisions apply, and if so whether our building complies. That is we must first check 
that our building contains elements of masonry construction, then Clause B2.3 is applicable; 
that our external walls are of masonry construction, then Subclause B2.3(2) is applicable and 
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finally that all such external walls comply with Subclause B2.3(2). 

The first problem that arises after having provided a graphical description of our design 
(and having determined that compliance with the BCA Code is required) is to determine 

which provisions of this code are actually applicable. This depends on the nature of the 

design. For example, a one storey building does not have stairs and therefore all provisions 

dealing with stairs are not applicable. We could thus start with the elements of the design and 
search the BCA Code for all relevant provisions. This entails three problems. The first 

problem is that of recognizing the elements of the design from the graphic database; the 
second problem is that of matching the description derived from the database to the 

descriptions used in the code; and the third problem is that of interpreting the BCA Code to 
ascertain the relevancies of certain references in the BCA Code to the elements found. For 

example, the above provisions deal with masonry construction. Most probably none of the 
elements interpreted from the CAD database will be identified as of 'masonry construction' 

but perhaps of brick, concrete, etc. In order to determine that Clause B2.3 is in fact 

applicable, there will have to be some recognition, that, a wall of brick or a floor of concrete 

does constitute masonry construction. So that, if we were to start from the elements 
themselves as obtained from the CAD database we could not directly identify the applicable 

provisions in the BCA Code. 

Alternatively, we could start with the provisions of the BCA Code and determine their 

applicability. This would mean interpreting each provision so as to determine its relevancy 

vis-a-vis the elements derived from the CAD database. Because of the structural organization 

of the BCA Code (and most such codes) it is not necessary to examine exhaustively every 

provision but an implicit enumeration approach makes it possible to prune those portions of 

the BCA Code not relevant to the situation at hand. For example, since the BCA Code is 

structured into Parts; each Part into Clauses; and each Clause into Subclauses it will be 

possible to determine firstly if a Part is applicable. If not, then there is no need to investigate 

any of its provisions. Similarly if a Clause is found not to be applicable then none of its 

Subclauses need be investigated. 
We do not want to design a system in which the description of a designed artefact is 

tailored to a particular description used in any particular application program. Therefore, the 
representations and the descriptions derived from a CAD system will be independent of the 

various application programs or knowledge systems which are needed to carry out the 
verification task. We will assume, however, a common domain, the domain of building 
designs, for example, so that both the descriptions in the CAD system and in the verification 
system refer to the same domain. We will continue using the BCA Code as an example of a 

verification application. It is obvious that both the descriptions of elements in the CAD 

system and those in the BCA Code are based on a much wider domain knowledge than the 

information stated. There are many assumptions made in the BCA Code about the 
relationships of building elements to each other, e.g. that columns are structural elements 

supporting such elements as beams, etc; about how to determine various information 
required, e.g. distance between exits. It is assumed that users of the BCA Code have a good 
deal of understanding of buildings. Similarly, when we interpret drawings we bring to bear 
this wide domain knowledge, e.g. walls connect to each other, they enclose spaces (together 

with ceilings and floors); doors and windows are located in or between walls, they form 

openings in walls, etc. 
Therefore, an essential part of any integrated system for the verification of designs from 
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CAD databases will have to incorporate a domain knowledge base wherein knowledge exists 
about the elements in the domain and the relationships between these domains. It is not 

sufficient to include descriptions which are concerned only with the physical and geometrical 

aspects of these elements, the descriptions must include functional and behavioural aspects 
since a verification task involves the evaluation of the performance of designs. This domain 
knowledge base, while recognizing that CAD systems and verification applications will refer 
to it, needs to be independent of the particular CAD system and application program. It 

requires a representation suitable for the description of this domain knowledge in a generic 
fashion so that it can be useful in a wide variety of situations. However, in order to effect the 
necessary communications between the CAD database and this domain knowledge, there will 
be a need for a graphic database interpreter. Similarly, in order to effect the necessary 

communications between the verification program and this domain knowledge, there will be 
a need for an interpreter , which in the case of verification programs in the form of expert 

systems will be a knowledge base interpreter. Both these interpreters will, of necessity, be 
specific to the systems being used. 

Interpretation 

Graphical images are usually interpreted semantically by humans without any concern for the 

process used to produce the image. One of the main difficulties in using traditional CAD 

systems is that they store their models syntactically in the form of data and procedures. 
However, as was shown in the example above, verification programs deal in terms which 
require interpretation of the syntax produced by the CAD system. It means that a computable 

semantic model of the screen graphics needs to be generated in order to be used in other 
design activities. Such syntax to semantics transformations are fundamental to any automated 

design verification system using graphical representations. 

Syntax and semantics in design 
Syntax is the vocabulary and rules governing the composition or structure of such 

vocabulary. Semantics is the meaning derived from some syntactical description. The 
vocabulary varies according to the domain and the application. For literature, the syntax 

consists of words and the rules of grammar. The semantics consists of the ideas expressed 
by this composition. The collection of these ideas is called a 'book'. At a different level, the 
syntax consists of books and the rules governing their arrangement. The semantics is the 
interpretation of this collection as a 'library'. 

Design is also concerned with vocabulary elements, such as gears, rods, transistors, 
struts and windows and how these elements are put together (Coyne et al., 1990). Design 
descriptions are in terms of syntax. The interpretation of design descriptions is an issue of 
semantics. Semantics is concerned with derived descriptions, either in terms of conceptual 
identification or in terms of performance. For example, a design description of four walls, a 
floor and a ceiling arranged in a given structure is interpreted to mean a 'room'; this same 
design description (given dimensions) can also yield such interpretations as: the area of the 
room is such and such; the size of the room is large; and the proportions are pleasing. The 

notions of syntax and semantics are not absolute. What is semantics at one level is syntax at 
another. For example in a geometrical context, given a syntax comprising points and their 
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locations, the semantic interpretation may be that of a set of lines. Talcing the lines and their 

arrangement as syntax, at a higher level of description, the semantic interpretation may be 

that of some shape, e.g. a rectangle. 

Type of knowledge inside a CAD system: syntax 
Drawings are graphical representations of design descriptions usually representing only 
topological and geometrical properties of a design although other properties may be attached 

to the elements of the design. Drawings on paper are merely marks on paper while on a 

computer screen they are merely an arrangement of pixels. Drawings are therefore syntactical 

descriptions of a design. Interpretations of the meaning of such drawings is done by the 

human observer. Certain lines mean elements such as walls or doors; groupings of these 

elements mean rooms, spaces, etc.; groupings of these spaces mean buildings. Working 

drawings specify the type of elements, their material, dimensions and location. This is all 

that is necessary for contractors (or CAM systems) to assemble the artefact. There is no need 

for them to know about the intent of the designer as to the function of the artefact or the sort 

of effects the designers are trying to create as long as the syntactic descriptions are complete 

and unambiguous. Of course when this is not so a knowledge of intent can help resolve such 

problems. 

As mentioned previously, there are three general types of CAD systems: drafting 

systems; modeling systems and domain specific modeling systems. Drafting systems, such 
as AutoCAD (Autodesk, 1988), store information as vectors of points or lines and/or may 

have a limited capability for representing 2D shapes and creating symbols to which element 

labels can be attached. There is no relationship between different views of the same object 

and such relationships have to be computed if required. A modeling system, such as EAGLE 
(Carbs, 1985), allows for the modeling of objects through graphic (and textual) input. These 

objects are identified by labels or names at the time of modeling. The modeling system stores 

information about objects-the database is organized as a series of objects indexed by their 

name and possessing certain properties, such as geometric and labels as to material. 
Drawings can be generated from any view and relate to the same object or set of objects. 

Elements such as walls which are represented by parallel lines at certain fixed distances apart 

but which may vary in length (and height) have to be interpreted as such. Elements such as 

rooms and other spaces must also be interpreted as these are not modeled explicitly but 
'emerge' from the arrangement of their constituent elements. A domain-specific modeling 

system, such as ArchiCAD (Graphisoft, 1989), provides menus of parametric elements (such 
as walls, roofs, floors) about which the system has certain knowledge regarding their 

topology and representation. Users select the appropriate symbol representing the required 
element and locate it by defining its position as well as its dimensions in three dimensions. 

These elements usually come with certain default values for various properties, such as 

thickness, material and representation. Users may change these default values at any time 

and these values are then associated with all instances of that element. In addition, there 
usually exist libraries of domain elements, such as doors, windows, fixtures and fittings as 

well as the ability for users to create their own. 
CAD databases usually have special formats that could be read and used by other 

computer systems. Two of the most common such file formats are: 
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(a) DXF (Drawing eXchange Format) and 
(b) IGES (Initial Graphics Exchange Standard) 

A DXF or IGES file contains both graphical and non-graphical information about a drawing 
formatted to be easily read by the user or a computer. Almost every CAD system provides 
some sort of facilities for reading and writing DXF or IGES files. An example of a DXF 

representation of an object inserted into a drawing is shown below. The indented numbers 0, 

8, 2, etc. are some of the group code numbers used by the DXF format. 

0 0 

INSERT Entity type ATIRIB Entity type 

8 1 

FLOOR Layer name JOHN The value of the attribute 

2 2 

ROOM Block name OCCUPANT The narru! of the attribute 

10 

5.0 The X coordinate of the insertion 

20 

10.0 The Y coordinate of the insertion 

Type of knowledge inside verification applications: semantics 
The knowledge in verification applications, as was shown in the above example drawn from 
the BCA Code, deals with required behaviours of elements in various situations. That is, the 
knowledge deals with semantic information and requires the interpretation of the current 
situation so as to match the intentions specified in the Code. For example, the meaning of the 
term 'exit' is that of a doorway leading to a road or open space or a pathway leading from 
spaces in the building to the exterior through passageways, stairs or ramps. This needs to be 
interpreted from the available syntax. 

DEVELOPMENT OF A SYSTEM FOR THE AUTOMATIC 
VERIFICATION OF DESIGNS FROM CAD DATABASES 

Domain Knowledge-Design Prototypes 

Knowledge about a particular domain needs be represented in a generic way so that many 
situations pertaining to that domain can relate to this knowledge. The type of knowledge 
required is knowledge about artefacts within the domain from the point of view of their 
structure, behaviour, function and relationships between these and also to other artefacts. 
Such knowledge provides a deep structure useful for reasoning within the domain. This 
knowledge should be sufficiently comprehensive to allow for a wide variety of situations 
which may arise within the particular domain and for a variety of verification tasks which 
may be deemed necessary. Furthermore, this knowledge must be able to be augmented or 
modified as the need arises since it is practically impossible to determine every need that may 
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arise except for a limited set of applications. In general, all the objects that need to be 
described using the CAD system must exist in the domain knowledge for meaningful 
instances to be created which will be capable of being evaluated. 

Previous systems for representing global domain knowledge have represented this 
knowledge using frames (Rehak and Howard, 1985; Dym et al., 1988). In the CODE system 
(Rosenman et al., 1986b), the model of the artifact described was extracted from the rule 
base of an expert system dealing with a building code and represented as frames. The EAGLE 

system was used to describe graphically an instance of a building and the elements thus 
described were modeled as instances of the model frames. The disadvantages in frames is 
that all slots representing attributes are equivalent in type. There is no capability to 
distinguish between the structure, behaviour and function properties of an object. Moreover, 
the frames describe only the attributes themselves and not the knowledge regarding the 
relationships between these attributes. 

Design prototypes have been proposed as a means of representing design knowledge 
comprehensively (Gero, 1987b; Gero and Rosenman, 1989). Design prototypes represent a 
class of design elements and embody all the knowledge necessary to produce a particular 
instance of the class or to evaluate the performance of a given instance. Design prototypes 
are structured along function, behaviour and structure properties as well as relationships 
between these. The design prototype schema allows the syntactic and semantic knowledge 
about the above classes of properties and how they relate to each other to be represented and 
manipulated efficiently. Figure 1 shows the model of a design prototype. The knowledge in 

a design prototype allows the derivation of values for structure and behaviour attributes, and 
the interpretation of structure descriptions to derive behaviour and function properties. In 
addition, there exists knowledge about the relationships to other design prototypes, and 
knowledge about function and structure constraints. 

Design prototypes may be at various levels of abstraction and may be related to each 
other by typological or structure properties. For example, a design prototype may have links 
'a_type_of, 'an_element_of, etc. with some other design prototype, thus forming a 
hierarchy of design prototypes both from a taxonomic and an elemental view. Instances may 
inherit properties from other more generic design prototypes through appropriate links. The 
prototype base contains all the prototypes deemed necessary for a given domain. This 
prototype base must be able to be augmented and/or modified as necessary. A design 
prototype engine performs the tasks of manipulating the knowledge in the prototype base, 
creating an instance of a specific design prototype and deriving values to specific variables of 
the instances as needed. 

It has been shown that an expert system based on such design prototypes has the 
capability to represent experience as a set of general concepts in which semantic and 
syntactical relationships are explicitly defined (Rosenman et al., 1989). This can form the 
basis of an expert system where different knowledge bases dealing with these concepts can 
be implemented to interpret structure descriptions to derive behaviour, to evaluate 
performances or to derive structure descriptions from function descriptions. Moreover, this 
representation allows for other applications, as well as graphical modeling systems to 
provide and receive information which can be interpreted as necessary. 
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FUNCTION PROPERTIES 

_
_ FUN_cn_o_N_GO_ALS __

_ 
)--{ FUNCTION OBJECTIVES ) 

BEHAVIOUR PROPERTIES 

( BEHAVIOUR A TIRIBlITES }--{ BEHAVIOUR VARIABLES 

STRUCTURE PROPERTIES 

( STRUCTIJRE ELEMENTS )--{ STRUCTIJRE VARIABLES ) 
KNOWLEDGE CATEGORIES 

( 1YPOLOOY KNOWLEDGE ) ( RELATIONAL KNOWLEDGE ) 
( CONTEXT KNOWLEDGE ) 
( QUALITATIVE KNOWLEDGE ) ( COMPUf A TIONAL KNOWLEDGE ) 

Figure 1. The model of a design prototype 
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Verification Knowledge-Production Rules and Procedures 

The verification tasks may be quite varied depending on the domain, the particular design 
and also the design context. Moreover, the verification knowledge may be in different fonns, 
e.g. procedures, tables, rules of thumb, prescriptive clauses etc. Rule-based expert systems 
have shown themselves especially capable of modeling situational and causal knowledge in a 
form which is easily comprehensible and relatively easy to formulate and maintain. In 
addition, they have the capability of providing explanations during the implementation 
process. However, for such systems, to incorporate some meaningful descriptions of the 
objects in their domain, an object-attribute-value representation is necessary to enable the 
extraction of these descriptions. This object-attribute-value representation thus allows for the 
mapping between the objects and their attributes within the scope of the expert system and 
that of the design prototypes. This knowledge representation allows for a wide variety of 
verification applications to be modelled in a uniform manner. 

For example some of the rules formed from the Code example of Section 3.3 are as 
follows: 

RSO IF 
AND 

1HEN 

R60 IF 
AND 
AND 
AND 

1HEN 

R70 IF 
AND 

1HEN 

R80 IF 
AND 
AND 
AND 

1HEN 

R90 IF 
OR_IF 

1HEN 

element OF building IS E 
type of construction OF E IS masonry construction 
applicability OF clause B2.B2.3 IS detennined. 

applicability OF clause B2.3 IS detennined 
FOR_ALL subclause OF clause B2.3 IS SCL 
applicability OF SCL IS detennined 
compliance WITH SCL IS satisfactory 
compliance WITH clause B2.3 IS satisfactory. 

applicability OF clause B2.3 IS detennined 
FOR_ANY type of construction OF external wall IS masonry construction 
applicability OF subclause B2.3(2) IS detennined. 

applicability OF subclause B2.3(2) IS detennined 
FOR_ALL type of construction OF external wall IS masonry construction 
NOT exemption FROM subclause B2.3(2) IS applicable 
thickness OF external wall >= 200 
compliance WITH subclause B2.3(2) IS satisfactory. 

classification OF building IS class 7 OR class 8 OR class 10 
number of storeys OF building IS 1 
exemption FROM subclause B2.3(2) IS applicable. 

In general, the above rules take the form of: 

IF condition1 AND ... AND conditionm 
1HEN consequence1 AND ... AND consequencen 
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where conditioni and consequenc9 take the fonn: 

<attribute> <PREP> <object> <VERB> <value> 

where <PREP> and <VERB> are any user defined terms 

The rules are formulated as a representation of the particular verification knowledge and, as 
such, follow the terminology used in such applications. This may not match exactly to terms 
used in the graphic description or existing in the domain knowledge. To be useful, this 
knowledge will have to be interpreted. Further, there may be knowledge regarding some 
aspect of the design both in the expert system knowledge base and in the design prototype 
base. Since the expert system knowledge is more specific to the problem at hand it takes 
precedence over the general domain knowledge. 

Not all knowledge can be formulated as rules. For example, calculations may be 
required or table lookups required. In such cases procedures will be required. The necessary 
information will have to be passed to these procedures and results obtained in a form 
compatible with the rest of the knowledge. 

Knowledge Base Interpreter 

The role of the knowledge base interpreter (KBI) is to interpret the rules in the knowledge 
base and make explicit the terms used therein. Using the object-attribute-value fonnat the KBI 
is able to extract the objects, attributes and range of possible values within the scope of the 

expert knowledge. Each object is then represented as a frame, its attributes as slots and facets 
provide for descriptions of various types of values for the attributes, including in which rules 
and which part of the rules the attribute is to be found. The KBI notes whether matches exist 
between the objects found in the expert system knowledge base and those in the domain 
knowledge. 

Not all the knowledge present in the knowledge base of the expert system can be 

interpreted by the KBI automatically. The knowledge engineers formulating the verification 
knowledge rule base will, determine matches and non-matches between the objects 
constructed and those in the domain knowledge. They may modify the terminology in the 
rules to conform with the terminology in the design prototypes or they may modify the 
design prototype base to incorporate new information where it is deemed appropriate. This 
may include modifying existing design prototypes and/or adding new design prototypes. 
Else, they have the option to add links between frame objects and design prototypes. For 
example, instead of changing the term 'stairway' it is possible to add a descriptor ' same_as' 
as in 'same_as: stair' to notify the system that 'stairway' and 'stair' are synonyms. 

In most cases, extra interpretative knowledge is required to make the necessary linkage 
between the knowledge base objects and the design prototypes. This knowledge will usually 
include procedures for deciding which information is required to identify such associations. 

To illustrate this kind of necessary interpretative knowledge, let us have a look at another 
example taken from the BCA Code: 
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C3.5 TYPE A CONSTRUCTION 

C3.5(1 )  Requirements - I n  a building required to be of Type A construction, each 

part mentioned in Table C3.5, and any beam or column incorporated in it, 
shall (subject to the modifications set out in this clause and clause C4.2) -

(a) 
(b) have an FRL not less than that listed in the Table, for the particular 

Class of building concerned; and 

(c) 

A simplified form of this knowledge formulated as rules and procedures could be as follows: 

R200 IF 

AND 
1HEN 

applicability OF Part C3 IS determined 
type of construction OF building IS type A 
applicability OF clause C3.S IS detennined. 

R210 IF 
AND 
AND 
AND 
AND 
AND 

applicability OF clause C3.S IS detennined 
FOR_ALL element OF Table C3.S IS E 
DO identify-element(E) 
DO table_lookup(C3.S, E, FRL, T) 
FRL OF E IS_REQD_TO_BE T 
FRL OF E >= T  

1HEN compliance OF clause C3.S IS satisfactory. 

Once clause C3.5 is applicable, i.e. we are dealing with a building of type A construction, 

we check every element in Table C3.5 to see if it exists in the building. If so, we look up the 
table to get its required FRL and compare that to its actual FRL. The 'DO' keyword in the 

rules makes calls to the function following. The elements in Table C3.5 are described in 
terms that will not match directly to the design objects in the domain and interpretation is 

required. A procedure to identify one of the elements mentioned in Table C3.5, e.g. 
'loadbearing internal wall bounding a public corridor' would have the following form: 

identify _elemenl(loadbearing internal wall bounding public corridor) 
if find instance I 

such that I is an instance of internal wall 
arxl I is an instance of loadbearing wall 
and I bounds S 
wlrre S is an instance of public corridor 

The above procedure will succeed if it finds an instance with the following type of 

information: 
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walll 
instance_of: 
instance_of: 

bounds: 

internal wall 
loadbearing wall 
ha112 

ha112 

instance of: corridor 

In addition, since the domain knowledge will not have the concept 'public corridor' this will 
have to be defined in the following manner: 

public corridor 
a_type_of: 
membership_criteria: 

caridor 
dependent_on R43 

where rule R43 may make a call to a procedure for determining whether an instance (of a 
corridor or hall ) is in fact an instance of a 'public corridor'. In this case this means 
detennining such things as whether the instance 'hall2' provides means of egress from a part 
of a storey to a required exit. 

Knowledge Base Objects-Frames 

It can be seen from the example rule base that there are two types of objects referred to in the 

rules. The first type are objects that refer to design objects. The frames corresponding to 
these objects are shown below: 

building (prototype) 
element 

affects: 
classification 

options: 
affects: 

[BCA_R50] 

class7, class8, class 10, ... 
[BCA_R90] 

category: unknown 
number of storeys 

affects: [BCA_R90] 

external wall (prototype) 
type of construction 

options: masonry construction, ... 
affects: [BCA_R80] 

thickness 
affects: [BCA_R90] 

In this case, the above objects could be reasonably expected to exist in the domain 

knowledge as design prototypes. When a match is found in the design prototype base this is 
noted by adding '(prototype)' to the object frame's name. Not all design objects mentioned 
in the expert knowledge base will have corresponding matches in the design prototype base. 
This may be because this object is specific to the expert knowledge, e.g. the object 'exit' or 
because of terminology used, e.g' stairway' as against 'stair'. It is also possible for 
attributes in an object matched to a design prototype not to exist in the domain knowledge as 

it is specific to the particular expert knowledge, e.g. the attribute 'classification' of the object 
'building'. In this case the attribute is marked with the value 'unknown' in the facet 
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'category' as the system has no way of telling the type of such attributes, i.e. if function, 

behaviour or structure. 
The other type of objects are objects which are not design objects but are objects to the 

expert system. These are also formulated as frames but, obviously, there will be no reference 
to any design prototype. Examples of such frames are shown below: 

clause 
applicability 

options: delennined 
affects: [BCA_R60, BCA_R70] 

subclause 
[BCA_R70] 

affects: [BCA_R60] 
compliance 

options: satisfactory 
[BCA_RSO] 

dependent_oo: 

subclause 
applicability 

options: delennined 
affects: [BCA_R80] 
d e p e n d e n t _ o n :  

compliance 

[BCA_R60] 

options: satisfactory 
adependent_on: 

The frame part of the system makes use of the usual properties of frame systems. 

Design Description-CAD Database 

Here we will assume a level of information in the CAD database corresponding to objects in 

the design. That is, we are not concerned with the interpretation of arrangement of pure 

geometrical features, such as lines, to derive features or objects as is the work of Nnaji and 
Kang (1990). We are therefore assuming that the CAD system allows the users to create 

'objects'. We have also previously stated that all objects to be described using the CAD 

system must exist as design prototypes. Nevertheless, the representation of such objects in 

the CAD database will be in a format incompatible with that of the domain knowledge and 
must be interpreted to produce descriptions which are meaningful to the rest of the system. 

CAD Database Interpreter 

In the process of integrating CAD systems with expert systems, the information presented 

graphically must be converted to a form that can be understood by the expert system, that is 
to a form commensurate with that of the design prototype format. For this purpose a CAD 
database interpreter (DBI) must be used. Where the CAD system database uses a standard 
graphic database format such as IGES or DXF or higher level format the interpreter must 

convert these formats to that of the design prototype format while if the CAD system database 
uses some non-standard format the interpreter must be written specifically for the particular 

CAD system used. CAD systems consist of a graphical interface and a database. The database 
of a CAD system contains representations of drawing elements and numeric or alphanumeric 

information associated with those elements. The syntactical information, namely, in the form 
of dimensions, locations, shapes, etc. can be mapped onto the structure properties of a 
design prototype. The graphic database interpreter consults the appropriate design prototypes 
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and converts the information in the CAD system's database to the appropriate instances of 

design prototypes. Where required, the design prototype will have the necessary information 
for recognizing elements in the CAD database and forming the appropriate instances. For 
example, the design prototype 'room' will have the required cells to procedures for 

recognizing that a 'space' with a label bounded by walls (and/or windows, partitions, etc) is 
a room of a certain type. Most current CAD systems provide special database utilities to 
access and manipulate their databases. For example, AutoCAD and EAGLE have programming 
languages that let users write programs to manage and manipulate both graphic and 
nongraphic data. 

Instance Base 

All processes concerning an actual entity deal with an instance of that entity. Entities are 

generated through their description using the CAD system. The instance base contains the 
instances created during the running of an application. The instance base thus constitutes the 

working environment of the system. Instances are descriptions of elements derived from the 

CAD database interpreter or of knowledge base objects derived from the knowledge base 
interpreter with their relevant attributes instantiated to derived values. 

System Implementation 

A system named IPEXCAD (Integrated Prototype-based EXpert CAD environment) for the 
verification of designs from CAD drawings has been implemented on SUN workstations and 
is described below. 

One of the major concepts utilised in the development of the system is a clear separation 
between the generic expert system module, which performs reasoning processes, the generic 
domain knowledge and the CAD package, which performs drawing operations. The system 
consists of seven subsystems. They are: 

(a) a user interface; 
(b) a stand-alone expert system shell, EXBUILD (Balachandran and Rosenman, 1990); 
(c) a stand-alone CAD system that provides standard drafting and modelling features; 
(d) a stand-alone design prototype system, PROTOKIT; 

(e) a knowledge base interpreter which interprets EXBUILD's knowledge base and 
allows the knowledge engineers to provide necessary interpretations; 

(f) a graphic database interpreter which interprets queries from PROTOKIT and directs 
them to the CAD database; and 

(g) the working memory. 

Figure 2 illustrates the system architecture diagrammatically. IPEXCAD uses a Macintosh-like 
interface under the Sunview window system. The user interface provides facilities for 
creating, modifying, displaying and saving information associated with design prototypes, 
instances and knowledge bases. A mouse-based text editing facility allows any text to be 
modified easily and conveniently. An appropriate CAD system may be invoked by selecting 
from a sub-menu which is displayed when clicking on the CAD icon from the main menu. 
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Figure 2. The system architecture of an integrated system for the verification of designs from CAD 
databases 

The verification process is initiated by the users selecting the 'verify' icon. If no CAD 

database is loaded (e.g. no design description exists) the users will be asked to describe 

their design either by generating a new description or by loading an existing one. Similarly, 
if no knowledge is loaded the users will be asked to load one or more such bases. The 

process will then pose the necessary queries to each such knowledge base to activate the 
verification process. Alternatively, users may load knowledge bases and pose selective 

verification queries to IPEXCAD. 
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The expert system used is EXBUILD (Balachandran and Rosenman, 1990), a hybrid 

expert system development tool written in C. EXBUILD uses both rule-based and frame-based 
representations. 

In this project we have chosen two of the popular CAD packages, namely EAGLE (Carbs 
Ltd, 1985) and AutOCAD (Autodesk, 1988). AutoCAD provides two ways to access and 
manipulate databases. The first is with AutoLISP, a programming language within AutOCAD 
that lets us write programs that will manage and manipulate graphical and non-graphical data. 
The second way is to extract the desired data from the DXF file using other external 
programs. 

EAGLE is a general purpose three-dimensional CAD modelling system which includes 
database management facilities. EAGLE is capable of exchanging graphical and non-graphical 
data through a vast array of data-exchange formats including DXF and IGES file formats. 

The design prototype system developed is PROTOKIT. PROTOKIT contains the design 
prototype manager, the design prototype base and the design prototype engine. The design 
prototype manager allows the user to create, modify, display, print or delete prototypes and 
instances. The design prototype system is capable of accessing information through 
inheritance using links such as 'a_type_of, 'an_instance_of, 'an_element_of and 
'same_as'. 

The KBI performs the necessary interpretations on EXBUILD's knowledge bases and 
creates the knowledge base objects according to the format of PROTOKIT. 

Currently a CAD database interpreter is being developed that performs the necessary 
mappings between AutOCAD's database and PROTOKIT. 

The working memory contains all the instances generated by the CAD database 
interpreter during a session. The expert system is capable of accessing information from the 
working memory through the knowledge-base interpreter. It is also capable to post inferred 
information to the appropriate instances in the working memory. 

APPLICATION TO BUILDING DESIGN 

Building Design Representation 

The AutoCAD drawing system is used to model and represent building designs in this 
example. Although AutOCAD is primarily used for 2-D drafting it provides features that are 
useful in modeling objects. A set of associated objects can be placed on layers or grouped 
together to form complex objects that can be manipulated as a whole. AutOCAD stores the 
locations, sizes and colours of the objects we draw for subsequent retrieval, analysis and 
manipulation. For example, objects such as walls, floors, stairs, windows and doors can be 
explicitly modelled and manipulated. The top window in Figure 3 shows a plan of an office 
building modeled using AutOCAD. 

Building Code Representation 

As noted previously, the requirements of the building code are represented in the form of 

IF/THEN rules. The major advantage of using the rule-based approach is that it allows us to 
keep the representation of any particular requirement at the same high level of abstraction 
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appearing in the original code. The representation of a part of the BCA Code, namely the 
Clause 02. 13 is shown in the bottom window of Figure 3. 

IPROCESSJ (EXPLAIHJ 

BLOCKS 
DIK: 
DISPLAY 
DRAW 
EDIT 
IHQUIRY 
LAYER :  
SETTillCS 
PLOT 
UCS : 
UTILITY 

3D 
ASHADE 

IF number OF r i sers requi rement OF stair IS satisfactory 
AllD dimensions of going requi rement OF stair IS satisfactory 
AllD dimensions of r i ser requi rement OF stair IS satisfactory 
AllD constancy requirement OF stair IS sati sfactory 
AllD opening in ri sers requirement OF stair IS satisfactory 
AllD tread nons l i p  requirement OF stair IS satisfactory 
AHD tread construction requirement OF stair IS satisfactory 
AllD change i n  direction requi rement OF stair IS sati sfactory 
AllD curvature requirements OF stair ARE satisfactory 
THUi suitabl ity for safe passage OF stair IS unsat isfactory . 

R42132 
IF HOT ( c l assifi cation OF bui lding IS cl ass 9a 
AllD appl icabi l i ty OF cl ause D1 . 7d :s determined) 
AllD max num of r i sers OF stair <= 1 8  
AllD max

-
num of r i sers O F  stair >= 2 

THEii number OF r i sers requirement OF stair IS satisfactory . 

Figure 3. Example of a design description and verification knowledge 

The rules shown are concerned with suitability and safety of stairways and deal with 
verifying the compliance with the given requirements as to provide safe passage. 

Domain Knowledge Representation 

As described previously, the domain knowledge is represented as design prototypes. The 
process of representing a design domain using the design prototype schema requires a large 
number of design prototypes in a network of hierarchies. Figure 4 illustrates the interface of 
the PROTOKIT system and the right window displays the prototype, named 'stair'. 
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i bathroo• \ bedroo11 
building 
cei l ing 
chair 

•xternal_wall 
faaily_room 
fire_stairvay 
floor 
foundation 
house 
internal_wall 
kitchen 
l iving_room 
aasonry_wal l 
aaster _bedroom 
ausic_room 
opening 
rectangle 
rectangular _rooll 
roof 

PROTOTYPE HAME : stai� 

TYPOLOOY_KNOWLEDOE 
A_T!lPE_OF : vertical circulation spAce, 

floor structure 
TYPES : straight stai r ,  dog_leg stai r ,  

curved stair 

FUllCTJ:OH_OOALS 
al l ow passage of humans fro111. one level to another 

FUHCTJ:OH_OBJECTJ:VES 
al low safe passage of humans 
.al low coafortable passage of humans 
miniaize SpACe taken in building 

BEllAVJ:OUR_A'lTRJ:BUTES 
safety, size, collfort , stabi l ity 

BEllAVJ:OUR_VAIUABLES 
steepness, aaxiMUJD. bending 111.oment , 
s l i pperiness, m.ax_nUJI of risers, 
m.in_nllll of risers 

STRUCTURE_ELEHENTS 
ELEHEHT_OF : storey 
ELEMENTS : stair _flight n)= l ,  stair _landing n)=O 

STRUCTURE_A'lTRJ:BUTES 
shape , aaterial 

STRUCTURE_VARJ:ABLES 
number of stair _flight, riser _height, 
length, height , width, going_w�dtb, 
nwa.ber of stair_landing 

COHPUTATJ:OHAL_KHOWLEDGE 
R20 
:IF DO number_risers(stair, MAXNO , .aimo) 
THEn •ax_nwn of risers OF stair IS MAXHO 
AHD 1nin_num of risers OF stair IS >am10 

Figure 4. Example of domain knowledge represented as prototypes 

Verification Process 

We will now follow through the verification process for the example given in Figure 3. The 
rules are structured so that, firstly, the applicability of each clause is determined and, if 
found applicable, then its compliance is checked. A part of the verification knowledge used 
to check stairs for their compliance is shown in Figure 3. Rule R42131  states all the 
conditions necessary for a stair to allow safe passage while rule R42132 states the conditions 
necessary for the first condition of rule R42131 ,  i.e. the requirement on the number of 
risers, to be satisfied (for certain buildings). 

According to rule R42132, given that our building is a Class 5 building and the first 
condition is satisfied, each stair must have a maximum number of risers of 18  and a 
minimum number of risers of 2. The design prototype description of a stair, illustrated in 
Figure 4, shows that the values for the behaviour variables 'max_num of risers' and 
'min_num of risers' can be determined from the computational knowledge in the design 
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prototype, namely rule R20. Note that the computational knowledge of the design prototypes 
in the form of rules should not be confused with the rules of the expert system representing 
the specific verification knowledge. Rule R20 makes a call to a procedure 'number_risers' 
which requires a given instance of a stair and returns the maximum and minimum number of 
risers for that instance. In this example, the stair under question is the stair instance 'stairl '  
as shown in Figure 5 .  Figure 5 also shows the instance 'stair_flightl '  which is an element of 
'stairl '. The information regarding the number of risers in 'stair_flightl ', namely 9, is 
derived from the graphical database of the CAD system. The procedure 'number_risers' uses 
this information and instantiates the values of 9 and 9 for the maximum and minimum 
number of risers of 'stairl ', since all the stair flights are equal. The expert system accesses 
the required information from the appropriate instances and updates the instances with all the 
facts inferred during the verification process. 

bui ldingl 
corridorl 
external_wal l l  
external_wal 1 2  
external_wal 13 
external_val 14 
floorl 
floor2 
roofl 

� stair _f 1 1  ght l 
stair _fl ight2 
stair _landingl 
storeyl 

IHSTAUCE ltAHE : stairl
• (search] [Quit) 

'IYPOLOGY_KllOWLEDGE 

AN_rnSTAllCE_OF : dog_leg_st&ir 

BEKAVJ:OUR_VAIUABLES 

max_nwn of risers 
VALUE : 9 

min_DUI\ of risers 
VALUE : 9 

STRUCTURE E LEMElrI'S 
AN_ELEMEllT_OF : storeyl 
ELEMEllTS : stair _flight l ,  

stair_landingl 
STRUCTURE_ATTIUBUTES 

stair_fl i ght2, 

shape 
VALUE : rectangle 

STRUCTURE_ VAR:U.BLES 

number of stair _flight 
VALUE : 2 

number of stair_landing 
VALUE : 1 

height 
VALUE : 3150 

J:llSTAllCE llAME : stair _fl ightl 

'IYPOLOGY_KllOWLEDGE 

AN_J:llSTAllCE_O F :  stair _flight 

STRUCTURE_ELEMENTS 

AN_ELEMEllT_OF :  stairl 
STRUCTURE_ VARIABLES 

number of risers 
VALUE : 9 

width 
VALUE : 1200 

riser _he ight 
VALUE : 175 

material 
VALUE : R . C  

length 
VALUE : 3200 

vidth 
VALUE : 2600 

length 
VALUE : 2000 

going_ width 
VALUE : 250 

Figure S. Example of stair instances generated during the verification process 

DISCUSSION AND CONCLUSIONS 

This paper has described an approach to the development of a knowledge-based system 
capable of checking a design through its description in a CAD database for conformance with 
some requirements. Conformance with the building code, BCA Code has been used as an 
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example of this process. Design prototypes have been used to represent the domain 
knowledge necessary to provide the necessary interpretations from semantics to syntax. The 
expert system, the domain knowledge and the CAD system are independent systems using 
knowledge representations suitable to their application. Communication is through the 
knowledge base interpreter and the CAD database interpreter. The domain knowledge is 
central in providing the unifying model through which communication is possible. The role 
of the knowledge engineer is to provide the specific CAD database interpreter depending on 
the particular CAD system used and providing the necessary interpretations to allow the 
expert system to access the relevant domain knowledge. 

This flexible coupling of the elements in the system allows for a wide variety of CAD 
systems and expert knowledge applications to be used. Though this paper has used the BCA 
Code as an example of verification knowledge and AutOCAD as an example of a CAD system, 
in general, various other knowledge bases and CAD systems can be used. For each such 
different knowledge base and CAD system the task of integration will be to provide the 
appropriate interpreters. 

While this paper advocates the production of a heterogeneous system, it is envisaged 
that in the future such systems will become more homogeneous as CAD databases become 
more standardised and especially as CAD systems begin to contain more domain knowledge, 
i.e. become more 'intelligent'. 
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