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Abstract: The pattern-mapping, pattern-classification, and
optimization capabilities of neural networks have been used
to solve a number of structural analysis and design prob-
lems. Most applications exploit the pattern-mapping capa-
bility and are based on the back-propagation paradigm for
neural networks. There are a number of factors that influ-
ence the performance of these networks. This paper initially
discusses these factors and the domain-dependent and -in-
dependent techniques presently available for improving per-
formance. The paper then considers the effect of representa-
tion, selected for the input/output pattern pairs, on the
performance of these networks and demonstrates that repre-
sentations based on dimensionless terms, derived from di-
mensional analysis, lead to improved performance. It is
shown that dimensional analysis provides a representational
framework, with reduced dimensionality and embedded do-
main knowledge, within which effective learning can take
place and that this representational change can be used to
enhance the domain-independent and -dependent tech-
niques presently available for improving performance of
these networks.

1 INTRODUCTION

A number of machine leaming paradigms have been used in
the past to solve structural analysis and design problems.
These paradigms were implemented using either a symbol-
ic, connectionist, or genetic algorithm approach. Of these,
the connectionist approach has, of late, attracted consider-
able interest, and the results of a number of applications in
the structural analysis and design area have been published
recently.!-2.11-15.18,19.21.29 There are also publications in
the related application area of material modeling,*8 which

can represent the initial stage in the structural analysis solu-
tion process.

In neural networks or connectionist models of computa-
tion, attempts are made to simulate the powerful pattern-
recognition capabilities of the human brain and to use this
capability to represent and manipulate knowledge in the
form of patterns. The recent resurgence in neural network
research and the consequential increase in its applications
have been due to the development of new neural network
architectures and powerful learning algorithms. A variety of
neural network models now exist, each with its own special
characteristics and capabilities, which make them suitable
for different types of applications.

In the area of structural engineering, the multilayer feed-
forward networks, based on the supervised learning proce-
dure and the back-propagation learning algorithm, have
been used extensively. These networks have been trained to
provide response information given a structural description;
the required geometric parameters, when only partial struc-
tural descriptions are available; and the element design pa-
rameters, for both preliminary and optimal designs, given
the geometric and topologic design information for the
structure. They also can provide material models, synthe-
sized either from experimental observations or, as in the
case of composites, from basic information relating to the
environment and the constituents of the composites.

The rationale for selecting a connectionist approach in
most of these applications is that once the network has been
trained, it can then provide the required analysis or design
information at a fraction of the computational effort re-
quired to generate the same information using the well-
established approaches based on causal models. For most of
the applications reported in the literature, these algorithmic
approaches were used mainly to generate the training sets
for the networks, and in all these cases, the time taken to
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train the network was much greater than the time taken to
generate the training sct. This approach is thus viewed as a
means of encoding and extending the knowledge gained
from previous analysis and design experiences.

Two other types of network models also have been used
to solve structural engineering problems. One of these, the
Hopfield network, has the capability for recall, even when
the input patterns are fuzzy or not fully defined, and can
hence function as an associative memory. The stable states
of this network, which are used to store information for
retrieval, are associated with the minima of an energy func-
tion, and this attribute has been exploited to solve combina-
torial structural optimization problems.!4-15 The other net-
work model, known as the ART (adaptive resonance theory)
network, is based on the unsupervised leamning procedure
and can be used to classify input patterns into specific cate-
gories, and this capability is adapted to solve structural
analysis and design problems.!3-15

There are a number of factors that influence the perfor-
mance of these networks. These factors are determined not
only by the features of the network but also by the represen-
tations used to describe the patterns that the network learns
to map. The representations selected for the input/output
patterns determine some of the topologic features of the
network as well as the level of complexity of the mapping to
be learned and hence the complexity of the network’s inter-
nal representation of the mapping. Representation plays an
important role in human problem solving and in learning.28
Itis therefore to be expected that representation would play
an cqually important role in machine learning applications
as well. The input/output pattern pairs usually can be de-
seribed in terms of a set of associated vector pairs. By pre-
and postcoding of the input and output vectors, respectively,
it is possible to modify the way any given network would
generalize and hence its performance.!?

Performance has been a major concern in most of the
structural engineering applications, particularly the general-
ization capabilities of the networks. In solving structural
optimization problems, the trained network is repeatedly
used within the optimization process to provide analysis and
sensitivity information. If the trained network performs
poorly in the generalization tasks, the design solutions ob-
tained by this process can be far from the optimal.2-12 This
possibility for gross errors in final results also can occur in
the use of material models that are obtained from trained
neural networks and used repeatedly within a finite-element
analysis to generate element characteristics.

The present investigation is hence directed toward using
the learning capabilities of the network to generate high-
level relationships—not previously known—for structural
design rather than in training networks to replace well-
understood algorithmic approaches. These functional rela-
tionships are useful for making design decisions, partic-
ularly at the preliminary design stage, and provide a means
of capturing previous design and analysis experiences in a
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concise manner. A number of these high-level relationships,
generated using human rather than machine learning capa-
bilities, have been reported in the literature. Three such
relationships and their derivations are discussed in refs. 7,
9, and 10.

Generating high-level relationships for structural design
can be posed as a problem of search, where the search is
conducted in two different spaces. Initially, a search for a
suitable representational framework is conducted in the de-
sign parameter space, and this is then followed by a search
of the functional space. Dimensional analysis provides the
basis for conducting the first search and defines dimension-
less parameters from which the required representational
framework can be constructed. The search in the functional
space can be based on statistical techniques, or the function
can be synthesized from transfer functions and connection
weights of neural networks. The present investigation uses
the latter approach.

The work reported in this paper represents the initial
stages in the investigation and is concerned with studying
the effect of representation on the performance of multilayer
feedforward networks in structural engineering applica-
tions. It demonstrates that representation plays an important
role in the learning process and that dimensional analysis
provides a suitable representational framework within
which effective learning can take place.

The paper thus initially considers the various neural net-
work models and identifies the features that influence their
performance, It then looks at some of the domain-
independent techniques available for improving the perfor-
mance of multilayer feedforward networks. This is followed
by a review of techniques used for improving performance
within the structural engineering applications reported in the
literature. It finally demonstrates that dimensional analysis
provides the required domain knowledge and that dimen-
sionless parameters can be used to construct the knowledge-
dependent representational framework within which learn-
ing is to take place.

The effectiveness of this representation on neural network
performance is demonstrated by comparing the results re-
ported previously2® with those obtained following a change
of representation of the input—output pattern pairs. Three
types of problems were considered, and for all three,
closed-form solutions are available. The solution to the
third problem, however, is in the form of an infinite series.
In all three cases, the changes in representations are selected
based on dimensional analysis and the mathematical mod-
els, which are known for all three cases considered.

2 NEURAL NETWORK MODELS

A number of neural network models with different charac-
teristics and capabilities have been developed and applied
successfully to a variety of tasks. The capabilities. of the
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different network models are determined by their structure,
dynamics, and learning methods.22 Performance of neural
networks is influenced by these three aspects, and each of
these aspects, in turn, is defined by a number of parameters
that can be controlled in any application.

The structure of the neural network can be described at
three levels. The lowest level of the network structure is
described in terms of the characteristics of the processing
element and is referred to as the microstructure. At this
level, the processing elements are characterized by their sum-
mation and transfer functions, which operate on the in-
coming signals to produce a single output. The transfer func-
tions commonly used are threshold logic, hard-limiting,
sigmoid, tanh, and radial basis functions. In some process-
ing elements, the input signals are modified by applying a
threshold function to provide a bias term and a gain term.
The bias term can have either a fixed or adjustable value,
and the gain term can be in the form of an adaptable param-
eter that influences the learning rates. For applications with
temporal sequences in the input patterns, either memory
functions can be encoded in the processing elements or the
summation function can be selected to include posttransfer
function activation of the previous cycle.??

The next level, referred to as the mesostructure, provides
a description of the organization and arrangement of the
processing elements in the network. It is at this level that
neural networks can be differentiated and formed into
classes. Description at this level provides information on
the number of layers, number of processing elements per
layer, types of connections, and degree of connectivity.
Based on these features, the available networks can be clas-
sified into the five different and structurally related classes:
multilayer feedforward, single-layer laterally connected,
single-layer topologically ordered, bilayer feedforward/
feedback, and multilayer cooperative networks. In struc-
tural engineering applications, the multilayer feedforward
(back-propagation), single-layer laterally connected (Hop-
field), and bilayer feedforward/feedback (ART) networks
have been used. In addition to these features, the networks
also can differ in the types of input and output patterns they
can represent and process.

A number of neural networks may have to be integrated
to form a system of neural networks in order to solve com-
plex problems. Description of the modifiable features of
these system of networks is referred to as the macrostruc-
ture. The structural engineering applications so far have
been based on the preceding network models and were
hence concerned with the features at the micro- and meso-
structure levels only.

The way in which a neural network processes data or the
patterns presented to it is referred to as network dynamics.
Processing could be carried out in a synchronous mode by
all the elements in a layer, with information flowing in the
forward direction, as in the case of a multilayer feedforward
networks. The elements process the data only once as they

flow through the network. In the Hopfield and ART net-
works, because of the nature of the connections between the
processing elements, processing can be recurrent and asyn-
chronous and continues until a stable state of the network is
reached. Stability of the network dynamics is thus an impor-
tant consideration in these types of networks. These net-
works can be shown to be globally stable if an energy
function that satisfies certain criteria can be defined. The
stable states of the networks then correspond to the minima
in the energy surface defined by this function, and the net-
work dynamics correspond to movement along the energy
surface toward a minimum point. The structure of the net-
work together with its dynamics determines the functional
abilities of the network and hence its possible applications.

The two main learning methods used to train networks
are the supervised and unsupervised learning procedures. In
the supervised learning procedure, the desired output re-
sponse is presented to the network for each input stimulus
provided by the training set. The network uses the feedback
error information between its own output and the desired
value to iteratively adjust its connection weights and hence
gradually organize itself to achieve the desired input/output
mapping. Learning results as a consequence of the change
or adaptation to the weights on the connections to minimize
an error function. The changes to the connection weights
are derived from a learning rule, which is generally a varia-
tion of either the Hebbian, delta, or competitive learning
rule. The learning procedure is implemented through a suit-
able learning algorithm. In the unsupervised learning proce-
dure, the network is presented with the input stimuli only.
The network organizes itself internally to create categories
by correlating the information available in the input data.
Structural engineering applications that require networks to
learn mappings between input/output pattern pairs have
been based mainly on the supervised learning procedure and
the generalized delta rule of learning.

The design of a network for a given application requires
initially selecting the structure, dynamics, and learning
method for the network. All structural engineering applica-
tions reported so far have been based on existing models,
and their performance in these applications can be improved
by controlling the modifiable features of the networks. In
the next two sections, domain-independent and -dependent
techniques for achieving improved performance are consid-
ered.

3 IMPROVING PERFORMANCE
OF NEURAL NETWORKS

The performance of multilayer feedforward networks can be
discussed in terms of the speed of learning and generaliza-
tion capabilities of these networks. The speed of learning
can be expressed either as CPU time or as the number of
epochs required for convergence of the back-propagation
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algorithm and thus can form the basis for comparison.©-2¢
There is at present no formal definition of what it means to
generalize correctly, but the generalization capability of the
network may be assessed based on how well it performs on
the test data set. These two aspects of performance can be
improved by modifying the structure, dynamics, training set
and schedule, learning rules, and representation selected for
the input data.

The modifications to the structure of the network can be
made at both the micro- and mesostructure levels. At the
microstructure level, improvements in performance have
been effected by rescaling the transfer function, using the
radial basis functions for the hidden units, using higher-
order connections, and using functional-link networks. The
effects of these on the performance of the networks are
discussed in ref. 22.

At the mesostructure level, the performance is improved
by controlling the network parameters such as the number
of layers, the number of processing elements per layer, and
the degree of connectivity. Guidance is available for select-
ing each of these parameters. It has been shown that one
hidden layer is sufficient to compute arbitrary decision
boundaries for the outputs, and two hidden layers are suffi-
cient to compute an arbitrary output function of the in-
puts.?? For continuous inputs, however, it is possible to
achieve good performance by using either a single or no
hidden layer, provided suitable microstructure characteris-
tics are selected or the mapping to be learned belongs to a
particular class of functions.

In determining the mesostructure of the network, it is
possible to sclect the number of input and output units as
cqual to the number of data items in the input and output
vectors, respectively, if a local representation is assumed. It
will be demonstrated in subsequent sections that the selec-
tion of input and output vectors and their representations
can considerably influence performance. Rules and heuris-
tics are available for the selection of the number of hidden
units, and procedures also exist for automatic sizing of hid-
den layers, including provisions for adding or removing
hidden units to improve performance.

Selecting the optimal number of hidden units can im-
prove both the speed of learning and the generalization
capability of the network. Removing redundant units will
reduce the number of connections and hence the number of
weights to be adapted during learning. It has been estimated
empirically that for back-propagation the learning time on a
serial machine is very approximately O(N3), where N is the
number of weights in the network.!7 A reduced number of
hidden units also can prevent the network from internally
configuring itself to function as a table lookup scheme dur-
ing the training phase and hence performing poorly in the
generalization aspects of the task.?

The basic back-propagation algorithm, which uses the
gradient-descent method to minimize the error function, is
too slow for many applications and scales up poorly for
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larger and complex tasks. A number of faster-learning vari-
ations of the back-propagation algorithm have been devel-
oped.6.26 Substantial improvements have been achieved by
appropriately tuning the back-propagation learning parame-
ters, eliminating flat spots due to the derivative of the sig-
moid function approaching zero at the extreme values,
which results in the output units getting stuck in the zero
state, and improving the optimization technique, using
some form of second-order weight update method or the
second derivative of the error function.-16.26 Parallel back-
propagation neural networks learning algorithms have been
developed employing the vectorization and microtasking
capabilities of vector MIMD machines, resulting in a signif-
icant increase in the speed of learning. 19

The learning rate, the momentum factor, and the range of
the random initial weights are the learning parameters that
influence performance of the back-propagation algorithm.
In the basic back-propagation algorithm, these parameters
are initially set to suitable values and are held constant
during the training process. The faster variations of this
algorithm improve their performance by modifying the
learning rate and the momentum factor, either according to
a fixed training schedule or dynamically using second-order
techniques.s-26 Previous investigations indicate that adap-
tive changes to the learning rate, based on information de-
rived from the error surface, can result in substantial reduc-
tion to the learning time.6

Problems associated with flat spots at the extremes of the
sigmoid function in the output units have been eliminated
and dramatic improvements to training times have been
achieved simply by adding a constant value to the derivative
of the sigmoid function.26 This problem is avoided in the
hidden units by normalizing and scaling the summed inputs
to the units. Substantial improvements, however, occur
only when adjustments are made to the output units.® The
improved optimization techniques used have been based
either on gradient information and the line-search methods
or on the second derivative of the error function, usually
obtained by some approximate method to avoid excessive
computation. 16

The improvements discussed so far are based on tech-
niques that are domain-independent. Further improvements
in performance can be effected by selecting a suitable train-
ing set and training schedule. In selecting the training set,
the representation and composition of the input and output
vectors, as well as the number and distribution of the train-
ing patterns, need to be considered. It is in the representa-
tion and selection of the input and output vectors that do-
main knowledge can be introduced to improve perfor-
mance.

4 STRUCTURAL ENGINEERING APPLICATIONS

The neural network applications in structural engineering
that have been reported so far fall into three groups: material
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modeling, analysis, and optimal design. In the material
modeling applications, the network learns relationships ei-
ther between the stresses and strains or between the prop-
erties of the constituents and that of the composite.48 In
the analysis applications, relationships between geometric
and section properties and the response quantities are
learned.2-12.29 In the optimal design applications, the rela-
tionships of interest have been those between the geometric
parameters and section properties.2-}2

In all these applications, attempts were made to improve
performance of the network by using some of the methods
discussed in the preceding section. At the microstructure
level, the performance was improved by tuning the learning
parameters, but this, however, was not done in an adaptive
manner. Functional-link networks were introduced but did
not produce the anticipated improvement in performance. 12
At the network or mesostructure level, all applications used
either one or two hidden layers and selected the number of
units in these layers either based on heuristics or by experi-
menting with different numbers of the units. The basic
back-propagation algorithm was used in all applications ex-
cept in ref, 21, where the Davidon-Fletcher-Powell method
was used to improve the speed of learning. The number of
units in the input and output layers was selected by parti-
tioning the variables that characterize the system into inde-
pendent and dependent sets. This partitioning is not unique
and depended on the mapping to be learned by the network.

It is in selecting the training set and the training schedule
that different approaches were adopted to improve the per-
formance of the network. In ref. 12, the input/output train-
ing pairs were initially selected at random, either in the
range defined by the upper and lower bounds of the design
variables or in a region about the known optimum. In order
to improve performance further, a data-clustering approach
was then adopted. Five cluster centers, including centers
about the optimum, were defined for the problem, and five
networks were then trained based on these clustered data.
This essentially partitions the space to be mapped and hence
reduces the complexity of the mapping. Improved perfor-
mance, both in terms of speed of learning and generaliza-
tion capability, has been reported when the training set was
selected based on orthogonal tables.2! In the material mod-
eling application in ref. 8, the network did not converge
when trained with all the stress/strain paths at once. The
performance of the network improved and it converged
when the data were presented to the network in stages, even
though no changes were made to the mesostructure. This
approach is referred to as shaping, where the efficiency of
learning is improved by increasing the training data set in
batches, and is applicable to other applications as well.22

Most of the applications in structural analysis and design
that were reported have trained the networks using represen-
tations that were used to generate the training and testing
sets, and only a limited attempt was made to determine
alternative representations that might lead to improved per-

formance of the network. Improvement in performance was
obtained by modifying the number of hidden layers and
units and by suitably selecting the training set and training
schedule. While these factors influence performance and
need to be controlled, representation also has a considerable
influence on performance, as demonstrated both in ref. 11
and the present study.

5 DOMAIN KNOWLEDGE AND
REPRESENTATION OF PATTERNS

In most structural engineering applications, performance of
the network was improved by providing domain knowledge
in addition to information about the domain that is implicit
in the training data set. The selection of suitable in-
put/output pattern pairs, clustering of data based on features
of the domain, and providing bounds for variables are all
techniques that make additional domain knowledge avail-
able to the network and hence assist the learning process.
Domain knowledge also can be made available to the net-
work in the form of information on which of the variables
that characterize the system can be grouped together in the
mapping function to be learned. Dimensional analysis pro-
vides this information by identifying dimensionless repre-
sentations of variables in terms of which the mapping func-
tion can be expressed.

Other representations for the input/output pattern pairs
are possible. In the functional-link approach, the initial rep-
resentation of a pattern is enhanced by describing it in a
space of increased dimensions. This results in the input
pattern being mapped on to a larger pattern space. This
representation, however, does not introduce any new infor-
mation. This approach has been shown to increase the learn-
ing rate and allows the use of a flat net with no hidden
layers.24

In this section, dimensional analysis and the information
it provides are initially considered, and the means of mak-
ing this information available to the network are then out-
lined. The representation resulting from dimensional analy-
sis is used to define the space in which learning is to take
place. Though an enhanced representation based on the
functional link approach can be selected to further improve
performance, it has not been considered in the present
study.

5.1 Dimensional analysis

Dimensional analysis is a well-established engineering tech-
nique that has been used for purposes of modeling and
similitude. Recently, the method has been used in artificial
intelligence as a tool for problem solving, including qualita-
tive reasoning problems, and discovery.3-23

The physical representations of variables have numerical
and symbolic components. The symbolic components are

-
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the dimensional representations of the physical variables,
and they encode a significant amount of physical knowledge
and are subject to a set of rules. Three such rules are dimen-
sional homogencity, the product rule, and the Buckingham’s
 theorem.2* The most widely used rule in dimensional
analysis is the Buckingham'’s m theorem, which in one form
can be stated as follows: If a physical situation is charac-
terized by n variables and r basic dimensions occur in the
dimensional representations of these variables, then there
arc n — r independent dimensionless products that are suffi-
cient to describe the situation.> These dimensional princi-
ples constrain all physical laws and hence are applicable to
all physical systems. There are a number of ways in which
the dimensionless products can be generated. Heuristics are
available for partitioning the variables and constructing
these products,3.3.23

5.2 Dimensionless forms of representations

In general, it is possible to express the domain relationship
in terms of n — r independent dimensionless products. It is
possible, in some situations, to combine the dimensionless
products and further reduce the number of independent di-
mensionless products required to describe this relationship.
Dimensional analysis thus leads to a reduction in the dimen-
sionality of the space in which the domain relationship is
defined, makes the regularities in the domain explicit, and
results in simpler relationships. It is also possible to derive
sensitivity information from the dimensionless products,
and this information has been used for qualitative reasoning
tasks. 323

In the present study, the dimensional analysis provides
the basis for identifying dimensionless variables, and these
are then used to define the representational framework with-
in which the network learns the mapping function. The
domain knowledge is thus embedded into the representa-
tional framework, and both the numerical and symbolic
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components of the knowledge in the physical representation
of the variables are made available to the network.

6 REPRESENTATION AND PERFORMANCE—
APPLICATIONS

The three problems solved in ref. 29 using neural networks
are selected for comparison purposes and to study the effect
of representation in learning. The back-propagation algo-
rithm has a number of parameters built in that could be used
to improve its convergence characteristics. Since all the
parameter settings for these three problems were not report-
ed, these problems were solved initially using the same
training and testing sets and representations as in ref. 29.
The results obtained for all three problems were very similar
to those reported and show the same trends, including poor
performance for the same patterns. This ensures that all
improvements in performance are attributable to the repre-
sentational change rather than to the parameter settings.

6.1 Load position—Bending moment patterns
in beams

In this problem, the network was trained initially using the
bending moment pattern in a simply supported beam subject
to a concentrated load. The input values were the bending
moments at 10 different sections along the span, and the
location of the load represents the output value. The net-
work was then tested using 8 bending moment patterns, 4 of
which were new. The results are shown in Table 1. The
network performed well on the patterns used for training but
poorly in some of the test patterns. The percentage error
values (ref. 29 values are shown in parenthesis) for the two
sets of results are very close. The slightly higher accuracy
observed in the present work is due primarily to the parame-
ter settings selected.

Table 1
Results for simple beam network—Representation in ref. 29

Percentage error (%)

Actual output Actual output Desired (ref. 29 values
Pattern from ref. 29 from present work output in parentheses)
] 0.207 0.200 0.200 0.0 (3.5)
2 0.398 0.399 0.400 0.25 (0.5)
3 0.607 0.601 0.600 0.17 (1.2)
4 0.794 0.798 0.800 0.25 (0.8)
5 0.271 0.273 0.300 9.0 (9.7
6 0.503 0.500 0.500 0.0 (0.6)
7 0.746 0.748 0.700 6.9 (6.6)
8 0.629 0.637 0.900 29.2 (30.1)
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Five variables characterize this problem (bending mo-
ment My, load P, their respective locations & and x, and
span L). From dimensional analysis, two independent di-
mensionless variables are sufficient to describe this situa-
tion. The dimensionless variables selected are Mg5/P8 and
x/L.

In ref. 29, the bending moment patterns used for training
were for the load placed at points 1/9, 3/9, 5/9, and 7/9 of
span from the left end. Though these are the second, fourth,
sixth, and eighth points along the span, they have been
incorrectly assumed to be 0.2, 0.4, 0.6, and 0.8 units from
the left end of a beam of unit length. In order to avoid this
error distorting the present investigation, the output loca-
tions have been corrected, and the comparison based on the
corrected values is given in Table 2. The percentage error
values for the representation of ref. 29 are given in paren-
theses. A three-layer network with two hidden layers, each
having 10 units, was used as in ref. 29. The parameter
settings for the back-propagation algorithm also were kept
the same for both representations considered in Table 2. In
this probiem, casting the variables in dimensionless form
did not result in a reduction in dimensionality of the space in
which learning takes place, and yet there is a dramatic
improvement in the performance, particularly in the predic-
tion of the network for the test cases. This indicates an
improvement in the generalization capabilities of the net-
work, even for test cases which are outside the range of the
training set.

6.2 Design of singly reinforced concrete beams

The design problem considered is that of selecting the depth
of a singly reinforced rectangular concrete beam to provide
the required ultimate moment capacity. Six variables (bend-
ing moment M,, steel and concrete strengths f, and f.,
reinforcement ratio p, width b, and depth d) are required to
characterize this design problem. Using dimensional analy-

sis, the number of independent dimensionless variables re-
quired to describe the design is three. The following dimen-
sionless variables are selected:

M b
u y
fc' d3 ’ pfr B and 2
For this problem, the explicit form of the mathematical
model is available? and can be expressed in the form

E—
fclbdz_klpf_(-; 1 k2pf’:7

where &, and k, are functions of £, but become constants if a
rectangular stress block for concrete is assumed.
Thus only two dimensionless variables

u

y
7z 4 P

are sufficient to provide an adequate representation. The
relationship is quadratic and hence easy to learn. If the
representation in ref. 29 is used, the relationship takes the
form

M 1

U X
fwid) f f
o (- tel)

= (3

fé

Clearly, this is a complex function in terms of the indepen-
dent variables M,, f., f,, p, and (b/d) and the dependent
variable 4. Learning in a space defined by these six vari-
ables is likely to be slow.

A network with five input units, two hidden layers of six
units each, and one output unit was used in ref. 29. Twenty-
one randomly chosen patterns were used to train the net-

Table 2
Effect of representation on simple beam network

Percentage error (%)

Representation Dimensionless (ref. 29 values
Pattern in ref. 29 representation Desired output in parentheses)
1 0.1115 0.1113 0.1111 0.18 (0.36)
2 0.3325 0.3325 0.3333 0.24 (0.24)
3 0.5566 0.5567 0.5556 0.20 (0.18)
4 0.7768 0.7770 0.7778 0.10 (0.13)
5 0.1921 0.2135 0.2222 3.92 (13.55)
6 0.4442 0.4423 0.4444 0.47 (.05)
7 0.7212 0.6801 0.6667 2.0 8.17)
8 0.5863 0.8308 0.8889 6.54 (34.04)
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work, and 31 patterns, including 10 new ones, were used
for testing. In addition to the considerable time taken to
train the network, some of the parameter settings had to be
manipulated to provide accurate results. Despite the size of
the sample and the preceding precautions, one of the test
patterns gave an error as high as 40 percent.2?

This problem was solved initially using the same repre-
sentation and nctwork topology as in ref. 29. The results
obtained were comparable, with the same test patterns giv-
ing rise to large errors as reported. A network with one
hidden layer with four units was then considered using the
representation in ref. 29. This network performed well on
the training set but gave much higher percentage errors for
the test set, indicating that the second hidden layer improves
the generalization capability of the first network.

There could be no direct comparison of performance of
networks using dimensionless representation and those
using the representation in ref. 29, since there is a large
difference in the dimensionality of the space in which learn-
ing takes place. From the dimensionless representation of
the mathematical model, it is evident that only two dimen-
sionless variables are required for the representation. Hence
a simple network with one input and one output unit with
one hidden layer having three units was considered.

The resuits are shown in Table 3. The network was pro-
vided with a smaller training set of five cases (patterns 1 to
5 in Table 3), yet the maximum error in prediction was
13.33 percent for all the 31 patterns presented to the net-
work. This error could be further reduced if the training set
is better selected. By replacing pattern 5 with pattern 13 in

Table 3
Concrete beam design results—Representation using dimensionless parameters

M

- 5 f Percentage error
Fattern fe'bd? pf; (desired) p f—v, {actual) (alternative training set
¢ € results in parentheses)
; g. :‘;;‘; 0.2533 0.2530 0.12 (1.54)
3 01307 g-fOOO 0.2021 1.05 (0.20)
3 01138 0'122(7) 0.1620 1.25 (1.44)
s 01382 o 0.1373 1.01 (0.36)
6 0.2157 0.2880 0.2443 0.41 (1.79)
7 0.1003 01200 0.2826 1.88 (3.40)
8 0.1715 0.2200 0.1175 2.08 (0.58)
9 0.1980 ' 0.2207 0.32 (0.82)
10 0.0940 0.2600 0.2580 0.77 (2.19)
I 0.1307 0.1120 0.1083 3.30 (0.09)
12 0:1745 0.1600 0.1620 1.25 (1.44)
13 0.0646 0.2240 0.2250 0.45 (0.76)
14 0.1115 8'?750 0.0650 13.33 (3.60)
15 0.1860 03000 0.1340 0.74 (0.74)
16 0.0818 0‘0400 0.2412 0.50 (0.88)
17 0.1176 0. 1960 0.0903 5.94 (0.52)
18 0.1631 0'230 0.1429 0.76 (0.21)
19 0.0687 0‘0808 0.2087 2.30 (1.32)
20 0.1158 0.1400 0.0710 11.25 (2.75)
21 0.1596 0.2000 0.1402 0.14 (1.36)
2 0.1761 0.2267 0.2037 1.85 (0.95)
23 0.1673 0.2133 02272 0.22 (1.01)
24 0.1596 0.2000 0.2147 0.66 (0.42)
5 0.1894 0.2400 0.2037 1.85 (0.95)
26 0.1660 0.2100 0.2460 2.50 (1.08)
2 0:1770 0.2280 0.2129 1.38 (0.29)
28 0.0922 0'“00 0.2285 0.22 (1.01)
29 0.1332 0.1650 0.1056 4.0 (0.27)
30 0.0910 ' 0.1656 0.36 (0.42)
31 0.1445 8’ ;ggg 0.1039 3.80 (0.0)
' 0.1820 1.11 (0.67)
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the training set, the maximum error in prediction reduces to
3.6 percent for the 31 patterns. The percentage error in this
case is as shown in parentheses in Table 3.

6.3 Maximum bending moments in rectangular
plates—Magnitudes and locations

In this problem, the network is trained to predict the magni-
tudes and locations of maximum bending moments in a
simply supported rectangular plate subjected to a unit con-
centrated load.

The input quantities selected in ref. 29 are the dimensions
of the plate and the location of the load. Since the load was
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assumed to be of unit value, these four quantities define the
input vector for the network. The output quantities selected
were the maximum bending moments in the x and y direc-
tions and their respective locations. The output vectors are
thus defined by these six quantities. The training and testing
patterns were generated using a finite-element analysis pro-
gram. A network consisting of four input units, two hidden
layers with six units each, and an output layer with six units
was selected. The network was trained on 30 patterns and
was tested using 12 patterns. There is a good correlation
between the desired and actual outputs in most cases, but
the results of some test cases show significant differences.

The variables characterizing the plate-bending problem
are the maximum bending moment (M, or M,), load P,

Table 4
Simply supported plate results—Representation as in ref. 29 (training patterns)

x Bending y Bending
Plate Load Desired Actual Desired Actual
Pattern x y x y M x y M X y M x y M x y

1 100 1.00 050 050 032 050 050 034 050 051 032 050 050 033 050 051

2 1.00 1.00 060 0.15 024 057 0.17 025 056 0.18 026 057 0.17 026 05 0.18

3 1.00 1.00 080 025 027 077 028 028 076 029 026 077 028 027 076 029

4 1.00 1.00 0620 0.75 027 022 073 028 023 073 026 022 073 026 023 0.73

5 1.00 1.00 0620 020 025 022 022 02 021 022 025 022 022 025 0.21 022

6 090 1.00 045 050 033 045 0.50 034 045 050 032 045 050 032 045 050

7 090 1.00 014 060 02 016 0.57 027 0.16 0.57 023 0.16 057 024 0.16 0.58

8 090 1.00 045 075 029 045 0.73 029 045 073 030 045 0.73 031 045 0.74

9 090 1.00 068 020 026 065 022 027 066 023 026 065 022 027 0.66 0.23
10 090 1.00 072 090 020 070 0.88 021 070 0.88 021 070 0.8 0.21 070 0.88
11 1.00 0.80 0.50 040 031 050 040 031 050 040 033 050 040 033 050 040
12 1.00 0.80 0.60 0.12 022 0.57 0.14 022 058 0.14 026 057 0.14 026 058 0.}4
13 1.00 080 090 064 021 08 062 022 088 062 020 088 062 020 0.8 0.62
14 1.00 0.80 020 060 026 022 058 027 023 058 027 022 058 028 023 0.8
15 1.00 080 0.75 040 030 073 040 030 073 040 030 073 040 031 0.73 040
16 0.70 1.00 0.14 0.20 026 011 022 026 012 023 023 0.11 022 023 0.12 023
17 070 1.00 010 060 025 012 057 025 0.12 058 021 012 057 021 0.12 0.58
18 070 1.00 0.17 0.80 027 0.19 077 027 019 077 025 0.19 077 025 0.9 0.78
19 070 100 052 020 027 051 022 027 051 022 025 050 022 025 051 0.22
20 070 100 035 075 030 035 073 030 035 073 029 035 073 030 035 074
21 100 0.60 020 0.12 022 022 0.14 022 022 015 025 022 014 025 022 0.15
22 060 100 009 060 024 0.10 0.57 024 011 058 020 0.10 0.60 020 0.i1 0.59
23 1.00 060 0.8 0.15 024 077 0.17 023 077 017 027 077 017 026 077 0.17
24 060 100 045 020 027 044 022 027 044 022 024 044 022 024 044 0.22
25 0.60 1.00 030 050 032 030 050 031 030 050 028 030 050 027 030 0350
26 .00 050 050 025 0206 050 025 026 0.50 025 032 050 025 031 050 025
27 050 100 013 080 026 0.14 0.77 026 0.14 077 023 0.14 077 023 0.14 0.77
28 .00 050 075 025 026 073 025 026 073 025 030 073 025 030 0673 025
29 0.50 100 040 090 023 022 036 023 022 036 026 022 036 0.26 022 036
30 1.00 050 060 0.08 018 060 0.09 0.19 060 0.09 023 060 009 024 060 0.09
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Table 5
Simply supported plate results—Representation as in ref. 29 (test patterns)

x Bending

y Bending

Plate Load Desired

Actual Desired Actual

Pattern X y x y M X y

3 1.00 100 0.75 050 030 073 050
32 1.00 1.00 090 080 021 088 0.77
33 09 100 0.18 020 025 020 0.22
34 090 100 022 080 026 025 073
35 1.00 0.80 0.60 0.12 022 0.57 0.14
36 1.00 080 0.80 020 026 077 022
37 0.70 1.00 035 050 033 035 0.50
38 070 1.0 056 090 0.21 054 088
39 060 100 030 0.75 030 030 0.73
40 .00 0.60 0.90 048 020 0.88 047
41 050 100 0.10 020 025 0.11 022
42 .00 050 020 038 023 022 0.36

032 074 052 0.29 073 050 030 074 052
0.17 091 083 0.19 088 077 0.12 091 083
026 0.18 022 025 020 0.22 025 0.18 022
027 024 077 026 025 073 026 024 077
0.22 058 0.14 026 057 0.14 026 058 0.1
0.25 0.76 0.22 027 077 0.22 027 0.76 022
032 035 049 030 035 050 030 035 030
025 046 074 021 054 0388 027 046 074
030 030 074 028 030 0.73 028 030 074
0.25 085 041 021 088 047 026 085 04l
025 007 023 021 0.11 022 022 007 023
0.24 018 032 026 022 036 027 0.18 032

location of load (x,, v,), and the plate dimensions (a, b).
The dimensionless variables selected are M /P (or M /P),
xy/a. v,/b, and bla. The location (x,, y,) of the maximum
bending moment section can be considered as a response
quantity, and a similar set of dimensionless variables can
then be selected for the location problem from dimensional
analysis. The decomposition of the problem posed into four
simpler problems permits the network to learn the four sepa-
rate functions that define the variations of the four response
quantities.

As in the preceding cases, the problem is solved initially
using the representation in ref. 29, and results similar to
those reported were obtained and are shown in Tables 4 and
5. The network was then trained using the dimensionless
parameters b/2a, x,/a, and y,/b providing the input values
and M /P providing the output value. By partitioning the
input and output patterns in this form, the relationships that
exist between the different sets of parameters were uncou-
pled, thereby reducing the dimensionality of the space to be
mapped. A separate network was then trained with M, /P as
the output value and the same parameters providing the
input patterns as for the first network.

The resuits obtained by the two networks for moments
are shown in Tables 6 and 7, where they are also compared
with the results in ref. 29. Significant improvement in per-
formance can be seen mainly for the test data set, indicating
that the dimensionless representation of variables results in
improved generalization capability. Similar improvements
are also observed in the results for the location of the maxi-
mum moment sections. Pattern 29 was left out of the train-
ing set, since the location of the maximum moment section
appears to be incorrect.

7 CONCLUSIONS

The performance of neural networks in structural engineer-
ing applications can be improved significantly by selecting
a suitable representational framework in which to present
the training input/output pattern pairs. Dimensional analy-
sis provides a means of selecting such representations and
permits the embedding of domain knowledge into the repre-
sentation and reducing the dimensionality of the space in
which the mapping function is to be learned. In the three
cases considered, dimensionless representations resulted in
improved performance, mainly in the generalization aspects
of learning, and this was achieved without introducing any
of the available domain-independent techniques. As demon-
strated in the reinforced concrete beam design problem, a
dimensionless representation results in a simpler mapping
function and makes it possible to train the network on a
smaller data set and still have the capability for reasonably
accurate predictions.

The real usefulness of neural networks in structural engi-
neering is not in replacing existing algorithmic approaches
for predicting structural response, as a computationally effi-
cient alternative, but in providing concise relationships that
capture previous design and analysis experiences that are
useful for making design decisions. The representations that
lead to efficient learning in neural networks also define the
spaces in which the search for such high-level relationships
for structural design should be conducted.

Though the present work has been developed in the con-
text of structural engineering, the approach is fairly general
and can be easily applied to other domains where dimen-
sional analysis is applicable.
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Table 6

Simply supported plate results—Effect of representation (training patterns)
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M, M,
M, (actual, M, M, (actual, M,
Pattern (desired) ref. 29) (actual) (desi}‘ed) ref. 29) (actual)

1 0.32 0.32 0.32 0.32 0.33 0.32

2 0.24 0.24 0.24 0.26 0.27 0.26

3 0.27 0.25 0.27 0.26 0.26 0.27

4 0.27 0.27 0.27 0.26 0.25 0.26

5 0.25 0.25 0.25 0.25 0.27 0.25

6 0.33 0.32 0.33 0.32 0.32 0.31

7 0.26 0.25 0.26 0.23 0.23 0.24

8 0.29 0.31 0.29 0.30 0.31 0.30

9 0.26 0.26 0.26 0.26 0.27 0.26
10 0.20 0.20 0.20 0.21 0.21 0.21
11 0.31 0.31 0.31 0.33 0.34 0.33
12 0.22 0.22 0.22 0.26 0.26 0.26
13 0.21 0.21 0.21 0.20 0.22 0.20
14 0.26 0.26 0.26 0.27 0.26 0.27
15 0.30 0.29 0.30 0.30 0.30 0.30
16 0.26 0.24 0.26 0.23 0.23 0.23
17 0.25 0.25 0.25 0.21 0.22 0.21
18 0.27 0.28 0.27 0.25 0.24 0.25
19 0.27 0.26 0.27 0.25 0.25 0.25
20 0.30 0.30 0.30 0.29 0.28 0.30
21 0.22 0.22 0.22 0.25 0.25 0.25
22 0.24 0.25 0.24 0.20 0.21 0.20
23 0.24 0.25 0.24 0.27 0.26 0.26
24 0.27 0.27 0.27 0.24 0.25 0.24
25 0.32 0.31 0.32 0.28 0.29 0.28
26 0.26 0.26 0.26 0.32 0.30 0.33
27 0.26 0.27 0.26 0.23 0.21 0.23
28 0.26 0.28 0.26 0.30 0.29 0.29
29 0.23 0.24 0.23 0.26 0.25 0.26
30 0.18 0.19 0.18 0.23 0.23 0.23

Table 7
Simply supported plate results—Effect of representation (test patterns}
MX MV
M, (actual, M, M, (actual, M,
Pattern (desired) ref. 29) (actual) (desi}*ed) ref. 29) (actual)

31 0.30 0.24 0.32 0.29 0.25 0.30
32 0.21 0.15 0.21 0.19 0.15 0.23
33 0.25 0.25 0.26 0.25 0.26 0.25
34 0.26 0.28 0.26 0.26 0.26 0.26
35 0.22 0.22 0.22 0.26 0.26 0.26
36 0.26 0.26 0.26 0.27 0.27 0.27
37 0.33 0.32 0.33 0.30 0.31 0.29
38 0.21 0.22 0.21 0.21 0.25 0.24
39 0.30 0.29 0.31 0.28 0.26 0.29
40 0.20 0.27 0.21 0.21 0.28 0.17
41 0.25 0.25 0.24 0.21 0.23 0.21
42 0.23 0.20 0.24 0.26 0.23 0.27
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