Evolving Design Genes in Space Layout
Planning Problems

John S. Gero and Vladimir A. Kazakov
Key Centre of Design Computing,
Department of Architectural and Design Science,
The University of Sydney, NSW 2006 Australia.
e-mail:{john kaz}@arch.su.edu.au

ABSTRACT

The paper describes the application of a genetic engineering
based extension to genetic algorithms to the layout planning
problem. We study the gene evolution which takes place when
an algorithm of this type is running and demonstrate that in
many cases it effectively leads to the partial decomposition of the
layout problem by grouping some activities together and opti-
mally placing these groups during the first stage of the computa-
tion. At a second stage it optimally places activities within these
groups. We show that the algorithm finds the solution faster than
standard evolutionary methods and that evolved genes represent
design features that can be re-used later in a range of similar
problems.

Keywords: genetic algorithms, genetic engineering, evolved genes, layout
planning

1. Introduction

The space layout planning problem is one of the most difficult in architectural
design. It is practically important in architectural design because it is the
basis of the development of most designs. It is important in a wider context
because it maps onto a large class of location-allocation problems including
VLSI floorplanning, process layouts and facilities layout problems. We will
use the formalization of the space layout problem as a particular case of a
combinatorial optimization problem - the quadratic assignment problem [1].

As such it is NP-complete and presents all the difficulties associated with
this class of problems. Over the years a number of approximate algorithms
based on combinations of global and local search techniques and heuristics
have been developed specifically for this class of problems. Although they
are reasonably efficient for small-scale problems, the computational cost is
still too high for large-scale problems. Another shortcoming of the majority
of these algorithms is the difficulty of ensuring (at least with some high
probability) that the solution found is close to the global optimum, that the
restart of the computation from another initial point would not result in a
better solution. That is why attempts to develop more effective tools to solve
the space layout problem continue. Since stochastic search methods such as
simulated annealing [2] and genetic algorithms [3] recently have proven to be
successful in solving combinatorial optimization problems they have also been
extensively used in design and in particular for the space layout problem, for
example [4, 5. Among other advantages is that they offer some theoretical
estimates of the global optimality of the solution found.

So far the major emphasis in design applications has been on genetic
algorithms due to their special appeal to the design computing community
- ease of interpretation with possible analogies with natural systems. We
use the extension of genetic algorithms [6] which is based on the concepts
of genetic engineering. It enhances the computational process by explicitly
evolving and using a hierarchy of evolved genes (genetic patterns) which are
responsible for the useful and harmful features of designs. Gene evolution
(development of this hierarchy from the original set of elementary genes)
proceeds in parallel with the evolution of designs themselves.

2. Space layout planning problem

The space layout problem is concerned with finding the optimal locations
for a set of interrelated objects. We use the following canonical form of this
problem [1] to find a one-to-one mapping p

p:{M =N}, j=p(), i€eM, jeN

of the discrete set M with m elements (set of activities, for example office
facilities) onto another discrete set N of n elements (set of locations, for
example floors of the building where these facilities should be placed), m < n,
such that the overall cost of the layout I is minimal

I=3 fioty + 222 GiCotiratg) — min
i i j
2

where f;; is the fixed cost of assigning element ¢ € M to element j € N; ¢;;
is measure of interaction of elements ¢, 7 € M; and c;; is measure of distance
between elements 4, j € N.

Some constraints are usually present in space layout problems which ei-
ther prohibit some of the placements or impose some extra requirements on
the feasible placements. They are usually handled by penalties.

3. Genetic engineering extension of genetic algorithms

Genetic algorithms (GAs) are a family of search methods which can be viewed
as computational models of Darwinian evolutionary theory. The search space
consists of character strings (chromosomes or genotypes) composed of the
elements of a given alphabet (alleles). GAs search for the points in the
search space which have optimal fitness. Typically they start by generating
a random population of states in the search space (initial generation) then
the next generation is reproduced from the initial one using the analogs
of evolutionary operators (usually crossover - the swap of the genotype’s
substrings and mutation - random change of a small fraction of the genes).
Then the process proceeds iteratively, each next generation is reproduced
from the previous one. The reproduction is done stochastically according
to the fitness of the individuals in the current population (“survival of the
fittest”).

One can also study the dynamic changes in the genotypic structure of
the population which take place during the evolution. The corresponding
process of genetic evolution can be interpreted as a competition between
different combinations of genes (clusters) for dominance in the genetic pool -
new combinations of elementary alleles fight their way into genetic pool of the
current population and some of the old ones are forced out of it. Some gene
combinations become very popular and make up a significant fraction of the
genes used to built genotypes of the current population. Some combinations
become extremely unpopular and make up a much lower fraction of the genes
than the ones in a randomly generated genetic pool. These changes of genetic
material during evolution can be viewed as an evolution of the basic genetic
primitives, the genetic alphabet, which is used to build the genotypes of
the current population. This process of genetic evolution starts with the
initial population of genes (genetic alphabet of original alleles) then the next
population of genes is bred from the original one where each entity (complex
or evolved gene) is a compound of the original alleles (elementary genes),
etc. The laws of the evolved genes reproduction are defined implicitly via the
evolution of the actual genotypes but it is clear, that reproduction proceeds

3

stochastically proportionally to the ability of evolved genes to generate fit
phenotypes (again “survival of the fittest” principle). In this interpretation
two interrelated evolutionary processes occur in parallel. The first process
replaces the set of original alleles with the emerged sets of more and more
complex (in the general case) and more specialized gene structures - the set
of evolved genes. The second process replaces the population of individuals
whose genotypes are built using the elementary alleles with these new popu-
lations whose genotypes are built using the current set of evolved genes. The
first process of gene evolution is not as directly controllable in the standard
GA as well as in particular GAs which emulate artificial evolution (breeding
processes) [7].

The modern practice of genetic engineering provides the means to study
and control directly this underlying process of gene evolution in order to short
cut the evolutionary path and to manufacture the population with desired
properties faster than can be done during the standard evolution process.
Essentially, the genetic engineering practice consists of three steps:

(1) the analysis of the current genetic pool in order to identify the beneficial
genetic material (“superior” evolved genes);

(2) extra processing of the genetic material of the population which makes
it richer in the “superior” evolved genes before the reproduction stage;

(3) it is known that the reproduction operators can disrupt the useful
genetic material [3]; hence the reproduction operators have to be modified
in order to prevent this from happening or at least make the damage of the
“superior” evolved genes which happen to be present in the current pool
less likely than it is for the standard evolutionary operators.

Step (1) is usually executed in the following manner, Figure 1: the “super”
group (extremely fit, for example, the fittest 10% of the population) and the
“sub” group (extremely unfit, for example, 10% of the population which are
most unfit) of the individuals are separated from the current population.
Then an attempt is made to find the genotypic features (characteristic sub-
string, patterns, etc.) which distinguish the former and the latter groups.
This is done using the apparatus of sequential analysis, which has been de-
veloped in the areas of genetic engineering, speech recognition and computer
science [8, 9, 10, 11, 12, 13, 14]. Assume that the characteristic feature of
a highly fit genotype in some problem is a contiguous substring (genetic
word) arbitrarily positioned within the genotype, Figure 1. Here genetic
analysis includes first making a list of all genetic words which are used in

4

majority of the “super” genotypes. Then those words which are also used
in “sub” genotypes are eliminated from this list. This procedure yields the
new “superior” evolved genes. A list of all words which are used some given
number of times in a group of sequences can be constructed using suffix trees
in linear time on the combined length of all the sequences considered [14].
The characteristic genetic patterns of the “super” group are declared the
“superior” evolved genes.

This conception of genetic engineering bears some relation to the concept
of ”gene linkage” [16]. However, there are important differences: we seek
to locate and articulate those gene sequences which produce the beneficial
fitnesses of the phenotypes; and we replace those gene sequences by a new
evolved gene, thus changing the alphabet with which the GA works.

Genetic processing from step (2) should be aimed at enriching the genetic
pool with the “superior” evolved genes with minimal changes to this pool.
It can be done by using techniques derived from genetic engineering:

(1) gene surgery - finding the pieces in the genotypes which differ from the
“superior” evolved genes only slightly (such that they could be converted into
these “superior” evolved genes using not more than some preset number of
gene swaps, for example) and replacing them with corresponding “superior”
evolved genes.

(2) gene therapy - random choice of a “superior” evolved gene and a position
within the genotype and execution of the pair-wise gene swappings required
to put this evolved gene in this position.

Step (3) consists of a modification of the reproduction operators which
explicitly prohibits the damage of “superior” evolved genes. For example,
the crossover point can be chosen only within the non-“superior” parts of
the parent’s genotypes, the mutation of the “superior” genes is not allowed,
etc.

The genetic engineering based GA has the following structure:

TOTAL POPULATION

“‘defective” evolved gene M “superior" evolved gene

Fig. 1: The identification of the “superior” evolved genes.

(1) Initialization of the population (randomly) and the library (usually
empty initially) of the “superior” evolved genes.

(2) (A) Extraction of the “super” and “sub” groups of individuals (ex-
tremely fit and extremely unfit) from the current population. For example,
it could even be the most fit 10% and the least fit 10% of the population.
(B) Identification of the “superior” evolved genes which distinguish these
groups from each other at the genetic level.

(C) Check to determine if the evolved genes which have already been evolved
actually distinguish the “super” and “sub” groups from each other.

(D) Update the evolved genes’ library by adding the newly evolved ones
and eliminating (some) of the ones which test negatively.

(3) Pre-reproduction processing step, defined by the type of the genetic
engineering technique employed.

(4) Reproduction using the evolved genes.

(5) If the stop conditions (for example, the given number of generations
have been produced or the population has converged, etc.) are not met go
to step (1).

The genetic engineering based modification of a GA is a computational
model of genetic engineering and serves as an extension of the GA just as
genetic engineering can be viewed as an extension of the natural evolution
process. Likewise, since this modification provides a direct control of the gene
evolution, the overall efficiency of the evolution process at the phenotype

6

12 13 14 15
BT
1 ‘A floor 4
_ I T

9 10#1
floor 3
I T

' floor 2

it

Fig. 2: Zone definition - graphical representation.

level is higher. The ability of the breeder (designer) to produce improved
individuals is also higher.

Note, that evolved genes have been described in very general terms as
some unspecified characteristic feature of a group of genotypes. Depending
on the particular type of genetic encoding it could be a particular genetic
substring in a given position (building block in standard GA theory [3]), or
some substring in an arbitrary position within the genotype or some structure
found within a substring. It could even be a group of genes gathered together,
irrespective of the order of these genes within the group (which, as we will
demonstrate later, happens to be the case in many layout planning problems).

4. Examples of space layout planning problems

Example 1: Office layout

As the first test example we use the problem of the placement of a set of
office departments into a four-floor building [1]. The areas of the 19 activities
to be placed (office departments, numbered 0,...,18) are defined in Table 1 in
terms of elementary square modules. There is one further activity (number
19) whose location is fixed. The objective of the problem does not have a
non-interactive cost term, i.e. f;; = 0. The interaction matrix g;;, ¢,7 = 0,19
is given in Table 2. The set of feasible placements is divided into 18 zones
numbered from 0 to 17, Figure 2. The areas of these zones are defined
in Table 3. The activity number 19 is an access area which has a fixed
location - zones numbers 16 and 17, Figure 2. Since the layout cost does

7

(a)

Fig. 3: The pattern used to map the genotype onto the phenotype: (a) The order of
between floor mapping and (b) of the mapping within the floor.

not depend on the areas of the zones numbered 16 and 17 or on the area of
the activity number 19 they are not shown in Table 3. The matrix showing
travel distances between all zones is defined in Table 4. We use the same
genetic representation as was used in [4] - the genotype of the problem is a
sequence which determines the order in which zones are filled with activity
modules. Each zone is filled line by line starting from its highest one and
from the leftmost position within it. For example, the genetic sequence
g=1{13,14,0,2,6,9,16,11,3,4,18,15,17,1,12,10,8, 7, 5} generates a layout
plan in the following manner: first, all 18 elementary modules of activity 13,
i.e. department 0800 are placed along the path shown in Figure 3, followed
by 31 modules of activity 14, i.e. department 0900. Thus, the original gene
alphabet of the problem consists of 19 alleles and each of these alleles must
be used only once in each valid genotype.

Activity Number Activity Name Number of modules

0 Dept. 0210 2
1 Dept. 0211 2
2 Dept. 0220 8
3 Dept. 0230 8
4 Dept. 0240 15
5 Dept. 6815 13
8 Dept. 0300 15
7 Dept. 0400 7
8 Dept. 0500 6
9 Dept. 0600 12
10 Dept. 0700 53
11 Dept. 6300 10
12 Dept. 6881 16
13 Dept. 0800 18
14 Dept. 0900 31
15 Dept. 1000 61
16 Extra module 1
17 Extra module 1
18 Extra module 1

Table 1. The definition of the activities ([1]).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0 3 3 2 2 2 3 2 3
1 3 2 2 2 3 2
2 2 2 3 2
3 3 2 3 2
4 2 3 2 3
5 3 2
6 3 2
7 3 2
8 2 3
9 2
10 3 2
11 3 2
12 3 2 3
13 2
14 2
15 2 3
16
17
18
19

Table 2. Activity interactions matrix ([1]).

zone 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
N Modules 20 22 20 20 18 20 18 18 16 18 16 16 14 16 14 14

Table 3. Zone definition (measured in number of modules) used by Liggett ([1]).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0 4 9 21 27 9 10 23 28 10 11 24 29 11 12 25 30 6 24
1 5 17 23 5 19 24 6 7 20 25 7 8 21 26 2 20
2 13 18 6 5 18 23 7 6 19 24 8 7 20 25 2 15
3 5 23 18 5 6 24 19 6 7 25 20 7 8 15 2
4 24 19 6 5 25 20 7 8 26 21 8 7 200 2
5 5 18 23 b 6 19 24 6 7 20 25 3 21
6 13 18 6 5 18 23 7 6 19 24 3 16
7 9 23 18 5 6 24 19 6 7 16 3
8 24 19 6 5 25 20 7 6 21 3
9 5 18 23 b 6 19 24 4 22
10 13 18 6 5 18 23 4 17
11 5 23 18 5 6 22 4
12 24 19 6 5 17 4
13 5 18 23 5 23
14 13 18 5 18
15 5 18 5
16 23 b
17 18
18

Table 4. Distance matrix ([1]).
Example 2: Hospital layout

Our second test problem is concerned with finding the optimal assignment
of 19 activities (defined in Table 5, labelled 0,...,18) of a hospital to 19
possible locations, labelled 1, ...,19 [13]. Unlike Example 1 this problem has
a set of “concentrated” activities. Each of these activities takes only one cell
on the grid. The distance and activity interaction matrices are presented in
Tables 6 and 7.

activity activity function activity activity function
code code

0 Receiving and Recording 10 X-Ray

1 General Practitioner 11 Orthopedic

2 Pharmacy 12 Psychiatric

3 Gynecological & Obstetric 13 Squint

4 Medicine 14 Minor operations
5 Pediatric 15 Minor operations
6 Surgery 16 Dental

7 Ear.Nose & Throat 17 Dental Surgery
8 Crology 18 Dental Prosthetic
9 Laboratory

Table 5. Activity definitions ([15]).

T 2 3 4 & 6 7 3 9 10 11 12 13 14 15 16 17 18 19
1 12 36 28 b2 44 110 126 04 63 130 102 65 ©8 132 132 126 120 126
2 24 75 8 75 108 70 124 8 93 106 58 124 161 161 70 64 70
3 47 71 47 110 73 126 71 95 110 46 127 163 183 73 67 73
4 42 34 148 111 160 52 94 148 49 117 104 109 111 105 111
5 42 125 136 102 22 73 125 32 94 130 130 136 130 136
8 148 111 162 52 96 148 49 117 152 152 111 105 111
7 46 46 136 47 30 108 51 79 79 46 47 4l
8 69 141 63 46 119 68 121 121 27 24 36
9 102 34 45 84 23 80 8 80 64 51
10 64 118 20 95 131 131 141 135 141
11 47 56 54 94 94 63 48 24
12 100 51 8 8 46 40 36
13 77 113 113 119 113 119
14 79 79 68 62 5l
15 10 113 107 119
16 113 107 119
17 6 24
18 12
19

Table 6. Distance matrix ([5]).

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0 76687 415 545 819 135 1368 819 5630 3432 9082 1503 13732 1368 1783
1 40051 4118 5767 2055 1917 2746 1097 5712 268 1373 268
2 3848 2524 3213 2072 4225 566 404 9372 972 13538 1368
3 256 829 128
4 47 1655 287 42 226
5 926 161
6 196 1538 196
7 301
8 1954 418
9 282
10 1686 226
11
12 42
13
14 99999
15
16
17
18

Table 7. Activity interaction matrix ([5]).

10

4000 | T T T T T -

3500

3000

2500 |

2000 -

1500

AVFRAGH FIINFSS OF THE PARTTTION

1000 |

500 |

8
POSITION

Fig. 4: Characteristic dependencies of average fitness of the defined fixed substrings (ran-
domly generated triplets) on the positions of these substrings within the genotype.

5. Gene evolution in space layout problems

The realization of a genetic engineering based GA for the layout planning
problem depends critically on the type of genetic regularities which occur
in this type of problem with a chosen genetic encoding. We employ an
order-based and position-dependent encoding. That is, in the general case,
fitnesses, averaged over the partitions of the search space made of all the
genotypes which contain some fixed substring in different positions within the
genotype, differ. Therefore, at first sight it looks like the genetic regularity
of this problem (its “natural” evolved gene) is a fixed substring in a fixed
position within the genotype [6]. Hence, all the computational machinery
should be designed based on this notion of the evolved genes as fixed-location
fixed substrings, identification should be aimed at finding such fixed sub-
strings in fixed positions, etc. Nevertheless, more detailed analysis of the
problem shows that this is not precisely the case here. First, let us plot some
characteristic dependencies of average fitness of populations whose genotypes
contain some fixed substring (randomly generated) against the position of
this substring in the genotype, Figure 4. This is the equivalent of defining
a number of activities to be next to each other and treating them as a new
“super-activity” which is never disaggregated. This new super-activity can
be located anywhere in the layout in the same way as any other activity. We
will call such gene groupings compact closed groups. The standard deviation
of the average fitnesses of the partitions, defined by the presence of the fixed
substring in their genotypes against the fitness of this substring is shown in
Figure 5. Figures 4 and 3 correspond to Example 1, but similar dependencies

11

45

s

35+

a3l © o

25 ®

2L

15+

STANDARD DEVIATION AS % OF THE AVERAGED FITNESS

L o
1 S

05 L L L L
3750 3800 3850 3900 3950 4000 4050 4100
AVERAGE FITNESS OF THE PARTITION

Fig. 5: The dependence of the standard deviation (measured as percentage of the averaged
fitness) on the averaged fitnesses of the partitions of the population defined by the fixed
substrings in the genotype. The fixed substrings were generated randomly.

are also found for Example 2. These computations as well as all further
computations of the averaged variables were performed using the Monte-
Carlo method. From these plots it follows that a dependence of the average
fitness of the genotypes, which contain a fixed substring, on the position of
this substring is almost flat and can be neglected as a first approximation.

An even stronger statement can be made - the characteristic feature of
suboptimal genotypes in many layout planning problems is the presence of
some genes as compact closed groups. The actual order of the genes within
these groups is less significant for the cost of a layout than the presence
of such groups in compact forms in genotypes. This phenomenon can be
understood if we analyse the part of the overall cost function of Example 1
due to interaction of the activities from such a group. For example, consider
the group {8,0,1,2,3,4} (which happens to be a “superior” evolved gene of
Example 1) and compute the reduced cost function

reduced cost = Z G5 Co(i)a()
1,j=8,0,1,2,3,4

and the complementary cost
complementary cost = I — reduced cost

averaged over the genotypes which contain this group of genes in a scattered
form, ie not contiguous, as well as over the genotypes which contain this
12

group in a compact form for 6 different random orderings of these genes.
The results of these computations are shown in Table 8. Figure 6 shows one
such scattered genotype and one compact genotype with their corresponding
layouts and costs.

gene group reduced cost complementary cost
scattered 1539 2539
{8,0,1,2,3,4} 607 2540
{0,1,2,8,3,4} 637 2536
{0,1,2,3,8,4} 671 2536
{4,1,2,8,0,3} 729 2510
{8,2,1,0,3,4} 628 2535
{4,2,1,8,0,3} 687 2509

Table 8. Average reduced cost of layouts whose genotypes contain gene group
{2,1,0,8,3} in a compact form with different orderings and in a scattered form
for Example 1.

gene group reduced cost complementary cost
scattered 27921925 31159923
{0,1,2} 21682872 31339432
{1,0,2} 23398516 31335705
{2,0,1} 21709788 32849239

Table 9. Average reduced cost of layouts whose genotypes contain gene group
{0,1,2} in a compact form with different orderings and in a scattered form in
Example 2.

The results of similar computations for Example 2 and evolved gene {0, 1,2}
are presented in Table 9. Here the reduced cost is defined as

reduced cost = Z i3 Co(i)p(5)
1,j=0,1,2

From these results it can be seen that the presence of these groups of genes
reduces and possibly minimizes the reduced cost function and that the order
of the activities within these groups is a less significant factor. It is clear that
the complementary costs of the layouts with scattered and compact forms
of these gene groups are approximately the same (that is, the dependence of

the complementary part of the cost on the positions of the genes from this
13

group is very weak). In other words, if one wants to find a layout with a
smaller reduced cost and approximately the same complementary cost, one
should search among layouts whose genotypes contain such genetic groups
and which contain the corresponding group of activities placed in a compact
spatial group (since our genetic representation is spatially continuous - if cor-
responding genes are located one after another then corresponding activities
are located one after another along the mapping path, Figure 3).

Essentially, this possibility to single out the reduced cost (effectively to
decompose the problem partially) is provided by the relatively high level of
variation of the components of the matrix product g; ; - ¢z ; and the presence
of a subset in this product whose level of variability is much lower. The
weak dependence of the reduced cost function on the order of activities
within the group is a consequence of this relatively low level of variations
of corresponding components of the product of the matrices {¢} and {c}.
Hence, in some layout planning problems “natural ” evolved genes (naturally
occurring genetic regularities) are not fixed substrings but rather groups of
genes.

Thus, the optimization of the layout cost can be performed in two steps.
First, identify these gene groups and choose their optimal positions with
respect to each other (which is the major source of cost savings). This yields
an optimization problem with a smaller number of parameters than the length
of the initial genotype (instead of the positions of all genes in such group we
have just the positions of the whole groups). Second, choose positions of the
gene-components (activities) within each of these groups which improve the
cost only marginally. It is clear that the standard GA actually performs both
searches simultaneously. The search process of the genetic engineering based
GA attempts to separate these two processes. Since the effective size of the
search space in these two subsearches is smaller than the overall size of the
search space of the original layout planning problem it can either be done
faster or produce a better performing solution for the same computational
expense. It is also clear that the local search in such large-scale spaces of
“granulated” cells corresponds to the non-local search in the original state
space.

Note that one does not have to establish beforehand the feasibility of
evolving the “superior” evolved genes in such a form - one can simply try
an algorithm based on a corresponding notion of the “group”-like “evolved
genes” and a two-level optimization process. Its success would be a sufficient
condition for the existence of such genes. Otherwise the genetic engineering
based GA degenerates into a standard GA.

Therefore, the aim of the identification step of the genetic engineering

14

genotype ={15,2,6,7,10,5,9,13,12,1,8,14,16,18,0,11,3,17,4}

Layout
15 15 15 15
reduced cost 1805
3
6|
complementary cost 2281
_— 12
10 | 7 6 L|
1=4086
9 L
] =y
I R L |12
10
| l_I 9 | 13
12
acces:

genotype:(15,6,17,7,10,5,9,13,12,1s,14,16,11frs,0,1,2,3,45

Layout - }V -
15 15 15 15

reduced cost 237

complementary cost 1896

10 6

[=2133

evolved gene

(b)

Fig. 6: Genotypes and corresponding layouts with a evolved gene in scattered (a) and
compagct (b) forms. Filled squares denote dummy activities 16,17 and 18.

15

original genotypes complementary packed genotypes

[8o[1]3]afz2 |7 [solu[s|17[6] =<——= [uf7 Tro[ua]s [17]s |

[l 7[0la]2]1 [8]3]of6 [17)11] =<——= [5T7 Tno[uas [17]11]

.. evolved gene

Fig. 7: Transformation of the original genotype into a “packed” form.

algorithm in this problem is to find particular groups of genes (irrespective
of their locations in the genotypes and their actual order within the group)
whose presence distinguishes the “sub” group. The simplest way to do this
is to compute empirical frequencies of the appearance of all compact genetic
groups (doublets, triplets, etc.) in the genotypes of the “super” and “sub”
groups. Then, such gene groups for which empirical frequencies are higher
than the probabilities of the corresponding genetic groups to appear in a
random sequences are filtered. Finally, the groups found exclusively in the
“super” group are declared as newly evolved “superior” evolved genes. This
gives the current set of evolved genes. It is clear that no evolved gene can
be present more than once in a valid genotype for this class of problems. It
is also possible that one evolved gene can contain a previously evolved gene
as its component. This generates a hierarchy of evolved genes.

Since evolved genes in this problem are not simply contiguous pieces of the
genotypes we cannot apply the fast identification procedure used in Section 3.
Instead we designed a specialized algorithm. It calculates average distances
between the positions of all the genes in all the genotypes from the analyzed
group. Those genes which are on average close to each in the “super” group
and are not close to each other in the “sub” group are declared as new evolved
genes.

For each individual layout we introduce a second complementary geno-
type where the corresponding compact groups of genes are replaced with
the new single evolved genes, Figure 7. This yields what we shall call

“packed” genotypes. We can view this transformation of the genotype as
16

the replacement of the decomposition of the genotypes on the elementary
alleles with its partial decomposition on the evolved genes. Note that the
information about particular ordering of the components within any instance
of such an evolved gene is still kept by the genetic engineering based GA in
the original genotype.

6. Genetic engineering based GA for layout planning
problems

The genetic engineering based GA now proceeds in three stages :
Stage 1 - simultaneous evolution of the “superior” evolved genes
and minimization of the cost of layout built from these evolved
genes.
(1) Fixed-sized population of the original genotypes is initialized randomly.
The corresponding population of packed genotypes is produced by just copy-
ing the original genotypes.
(2) Standard GA is run. Genetic operators are applied to the packed geno-
types (this guarantees the survival of the evolved genes which are currently
present in the population). Then the corresponding unpacked genotypes
are reconstructed from the packed ones by replacing the evolved genes with
their particular realization (particular ordering of their components) in the
corresponding parent.
(3) After a fixed number of generations (or after some fixed reduction of
cost is achieved) the “super” group of the best 10% of packed genotypes of
the population and the “sub” group of the worst 10% of the population are
singled out and analysed. The compact gene groups found almost exclusively
in the “super” group and almost never in the “sub” group are declared new
“superior” evolved genes. The packed form of the current genotypes is re-
produced by scanning unpacked genotypes and replacing all the instances of
the evolved genes with the single new evolved genes.
(4) Optional step - advanced genetic engineering operation. We use some
hybrid of “gene surgery” and “gene therapy” - all the genotypes which
do not belong to the “super” subpopulation are updated by moving the
components of the corresponding evolved genes together. This is done in
a way which minimizes the changes to the genetic material, that is, which
can be done using the minimal number of pairwise swappings of the genes.
It is clear, that it can also be done by re-initializing the non-“super” part
of the population with the randomly generated packed genotypes and then
reconstructing evolved genes using random ordering of their components. (5)
Repeat steps (1), (2) and (3) until the population converges (or until there
17

is no progress during some predefined number of generations).

Stage 2 - checking the optimality of the evolved set of “superior”
evolved genes.

(1) The goal of this step is to relax the restriction on the genotypes of the
population imposed by the current set of evolved genes and to check that
the evolution without evolved genes is not productive. This is achieved by
replacing the genotypes of the population except its “super” subgroup with
the random sequences of the initial alleles and by forming the corresponding
set of the packed genotypes by copying the original genotypes. Then a
predefined number (chosen empirically) of evolution steps are executed. If
there is no improvement then we assume that the evolved set of genes is the
potentially optimal one. Otherwise we check what part of the evolved genes
are still the “superior” evolved genes of the population. If we end up with the
same evolved genes then again we assume that the current set of the evolved
genes is the optimal one. Otherwise we return to the first stage with the
current set of “superior” evolved genes and continue evolution of the layouts
and further evolution of the evolved genes.

Stage 3 - evolving optimal ordering of the facilities within “supe-
rior” evolved genes.

(1) At this stage the population consists of the copies of the same packed
genotype. Crossover and mutation operate here on the corresponding “su-
perior” evolved genes. That is, after two parents are chosen then instances
of the same evolved genes which are present in these two parents are crossed
with each other with some probability and the resulting instances of the
evolved genes are mutated. In other words when we cross two genotypes we
actually cross and mutate the corresponding evolved genes.

(2) The evolution proceeds until some predefined number of steps is per-
formed or until the population converges.

We use the standard one-point crossover operator - two parental geno-
types are picked randomly based on their relative level of fitness from the
current population then a crossover point is chosen at random in both geno-
types where they are cut and finally genotypes of two children are produced
by combining the first part of the first parent’s genotype and the second part
of the second parent’s genotype and vice versa.

7. Numerical results

Example 1: Office layout
The result of the run of the standard GA which converges to the best

18

-1800

2000 F /4

2200 F ! /J —_— standard GA

o genetic engineering GA
2400 -/

-2600 —[/

-2800 %

- LAYOUT COST

3000 L L L L I I
0 10 20 30 40 50 60 70 80 90 100
GENERATIONS

Fig. 8: The best fitness vs. generation number for the standard GA and genetic engineering
based GA in Example 1. The results are averaged over 10 runs with different initial random
seeds, which converge to the best solution found.

solution for Example 1 (averaged over 10 such runs from different ini-
tial random seeds) is presented in Figure 8 (bold line). The population
size was 200, probability of crossover 0.6 and the probability of muta-
tion 0.01. We use elitist GA with a generation gap of 3. On average,
it was necessary to run the GA 13 times in order to get the solution
{7,6,13,17,14,12,15,5,18,11,10,9,0,1,2,8,3,16,4} with the cost of the
corresponding layout of 1834. Although we use elitist GA with different
parameters and a different realization of the crossover operation the results
are essentially the same as the output of the EDGE system [4]. The analysis
of the evolutionary path of the GA shows that the search process consists
of a first stage (5-10 generations) when the crossover serves as the major
constructive tool and when non-local search takes place and of a second
stage when pair-wise swapping of the genes is the driving force of a search.
During the first stage the algorithm finds the point which belongs to the
basin of attraction of one of the minima. During the second stage (about
90 generations) crossover does not make any contribution to the search, the
actual improvement is due to mutations only and the algorithm actually
searches locally within the basin of attraction just found.

The results of the genetic engineering based GA are presented in Figure
8 with the dotted lines. Two “superior” evolved genes were identified after
5 generations: {0,1,2,8,3,4} and {12,14}. After generation 10 two further
genes evolved, {6,13} and {15, 12,14}, which includes the previously evolved

19

-1.6e+07

180407 [/W/,"/WM /
20407 |- /_/—/

220407 |- / 6
240407 -/

-2.6e+07 |-

LAYOUT COST

2.8e+07 -

-3e+07 |-

-3.2e+07 |-

-3.4e+07 |-

3.60+07 L L L L L L
0 5 10 15 20 25 30 35 40 45
GENERATIONS

Fig. 9: The best fitness vs. generation number for the standard GA and genetic engineering
based GA in Example 2. The results are averaged over 10 runs with different initial random
seeds, which converge to the best solution found.

gene {12,14}. On average just two runs were required with different initial
seeds to find the layout with the cost of 1834. It turns out that both versions
of the advanced genetic engineering operations described in stage (3) of the
algorithm produce essentially the same computational results. The compu-
tational cost of genetic engineering analysis was approximately one tenth of
the computational cost of one generation of the GA (probably because the
genotype-layout mapping is very expensive computationally here).

Let us note that our results (as well as the results presented in [4]) are
not directly comparable with the results of [1], since we omitted the penalty
associated with splitting activities between floors.

Example 2: Hospital layout
The results of the numerical simulations of the second test problem are
presented in Figure 9. The bold line denotes the results of using the standard
GA. The dotted line denotes the results of the genetic engineering based GA.
On average it took 26 runs of the standard GA from different initial random
seeds to find the point {8,9,6,18,13,17,12,16,5,10,3,4,11,7,14,15,0,1,2}
with the cost 17212548. The genetic engineering based GA needed on average
only three runs with different initial seeds in order to find this layout. The
corresponding dependence of the best layout cost on the generation number,
averaged over 10 successful runs, is shown in Figure 9 with the dotted line.
Three genes evolved: {0,1,2} after generation 2, {14, 15} after generation 7
and {8,9,6} after generation 4. The computational cost of genetic analysis

20

s
I 4 5 6 7 12 13 14 14
27 floor 2
2] T LI T
" :_ o 1 2| |38 ? 0y
4 i floor 1
] AL T TT
Ay
0 5 \

10 15 \// 20 25 30 35 40

access

Fig. 10: Modified floor locations from Example 1 - graphical representation.

here was approximately one half of the cost of production of one generation
by the GA (because the genotype here is actually a layout).

Genetic engineering based GAs allow larger areas of the entire search
space to be explored than could be done by a standard GA subject to
the same computational expense. The computational savings in terms of
generations are of the order of 90% (although some extra computations are
needed for additional gene analysis and processing these are a relatively small
persentage of the computational cost of a single generation of the standard
GA).

8. Using evolved genes to solve families of layout plan-
ning problems

In many cases one has to solve a number of similar layout planning problems
(for example, to place essentially the same set of activities into different
locations, etc). Unfortunately, it is very difficult to use information about
optimal layouts already designed to generate solution for a similar problem.

The major advantage of the genetic engineering based GA is the possi-
bility to re-use the evolved genes (pure information about optimal layouts)
in a family of similar problems. This possibility is based on an intuitively
obvious assumption that in many layout planning problems some activities
“gravitate” to each other much more strongly than they are attracted to
the rest of the activities and therefore should be placed as a compact spatial
group in any suboptimal layout. If the possible locations (distance matrix) is
changed then one still has to place such activities in a compact spatial group
(although the actual physical placement could be quite different). Even the
changes to the activity’s interaction matrix could preserve the attraction

21

i T i it I

Example 3: Modified office layout

In order to check this intuition we first modified the problem in Example 1,
by changing the geometry of the system to be that shown in Figure 10. This
yields the distance matrix shown in Table 10.

0 1 2 3 4 6 7 8 9 10 11 12 13 14 15 16 17 18

5

0 [4 9 21 27 9 10 23 28 39 44 57 62 40 45 58 63 6 24
1 | 5 17 23 b 19 24 35 40 53 58 36 41 54 59 2 20
2 13 18 6 5 18 23 30 35 48 53 31 36 49 b4 2 15
3 5 23 18 5 6 18 23 36 41 19 24 37 42 15 2
4 24 19 6 5 13 18 31 36 14 19 32 37 20 2
5 5 18 23 40 45 58 63 30 36 49 55 3 21
6 13 18 35 40 53 58 25 31 44 50 3 16
7 9 22 27 40 45 12 23 31 37 16 3
8 13 18 31 36 5 10 23 28 21 3
9 5 18 23 5 10 23 28 4 22
10 13 18 10 5 18 23 4 17
11 5 23 18 5 10 22 4
12 28 23 10 5 17 4
13 5 18 23 5 23
14 13 18 5 18
15 5 18 5
16 23 5
17 18
18

Table 10. The modified distance matrix for Example 3, which corresponds to the
floor locations shown in Figure 10.

The activity interaction matrix remains the same. The results of the
optimization are shown in Figure 11. We run the standard GA and genetic
engineering based GA beginning with the empty set of “superior” evolved
genes (dotted line) and from the previously evolved ones (dotted line). We
can see that the re-use of the evolved genes yields about a 20% savings in
terms of the number of generations.

Example 4: Modified hospital layout

The simulations were also carried out for the second example with a modified
distance matrix (the average change of its component was about 6%), Table
11. The results (standard GA, genetic engineering based GA with an empty
initial set of evolved genes and genetic engineering based GA with the set
of evolved genes that was evolved for the Example 2) are shown in Figure
12. Again, we can see computational savings when re-using the previously
evolved genes.

22

-2600

-2800

-3000

3200 |

-3600

- LAYOUT COST

-3800

-4000

-4200

-4400

-4600

-3400 |

standard GA .
genetic engineering GA

genetic engineering GA
using genes evolved

for the original problem .

20

30 40 50 60
GENERATIONS

Fig. 11: The best fitness vs. generation number for the standard GA and genetic engineer-
ing based GA in Example 3. The results are averaged over 10 runs with different initial
random seeds, which converge to the best solution found.

-1e+07

-1.5e+07

-2e+07

-2.5e+07

-3e+07

-3.5e+07

- LAYOUT COST

-4e+07

-4 .5e+07

-5e+07

-5.5e+07
0

standard GA
genetic engineering GA 1

genetic engineering GA i
using genes evolved

for the original problem

15

20 25 30 35 40 45
GENERATIONS

Fig. 12: The best fitness vs. generation number for the standard GA and genetic engineer-
ing based GA in Example 4. The results are averaged over 10 runs with different initial
random seeds, which converge to the best solution found.

23

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

18

19

i 12 36 24 B2 44 110 125 89 63 125 101 65 01 123 124 126
2 24 71 72 75 108 68 118 81 93 106 58 124 151 154 67
3 47 70 43 110 73 117 65 95 107 46 121 155 163 73
4 42 34 142 102 160 51 94 146 49 109 102 105 104
5 42 125 126 102 13 73 115 30 94 125 127 136
6 148 111 162 46 96 148 49 115 145 152 111
7 46 46 136 39 30 108 51 72 79 46
8 59 138 55 46 111 68 121 119 19
9 102 34 45 77 20 74 80 65
10 54 118 20 95 131 124 141
11 47 49 47 85 94 63
12 100 51 89 8 46
13 71 113 113 109
14 | 60 79 68
15 3 113
16 109
17

18

19

120
61
67
105
120
99
47
24
63
129
42
39
113
62
106
107

126
70
68
111
136
111
31
29
44
134
24
27
119
51
116
119

12

Table 11. Modified distance matrix for Example 4.

9. Conclusions

Layout planning remains an important task in architectural design. It has
been formulated as a mathematical optimization problem. However, this
has been shown to be an NP-complete problem in its complexity, which
explains why it is so difficult to obtain optimal or near optimal solutions.
The approach presented here has some intuitive appeal for designers because
of the direct mapping between the genes and their expression in a layout.
It has a further appeal since the evolved genes readily map on to groups
of activities which need to be located next to or near each other. Such
information is hard to see intuitively in a large scale problem.

Another advantage of this approach which has not been seen in other
approaches is the ability to re-use the evolved genes in related problems. The
evolved genes represent problem-specific knowledge that has been learned
by the system which is now externalized and available for re-use in similar
problems. In conclusion, we have developed a genetic engineering based
extension of GAs and applied it to layout planning problems. We demon-
strated that in a number of layout planning problems the solution process
can be roughly divided in two stages. During the first stage some activities
are aggregated into compact groups and the objective is to find the optimal
placement of such groups. During the second stage the optimal location
of the activities within these groups is sought. The first stage corresponds
primarily to non-local search in the original search space (since even pair-wise
permutation of two aggregated activities corresponds to the macro step in
the placement space of non-aggregated activities). The second stage sooner
or later becomes a local search. We demonstrated significant computational
advantages of such an extension. We have also shown that such optimal
(natural) aggregation of activities can be used in a range of similar problems
with significant computational benefits.

24

10. Acknowledgments

This work is directly supported by a grant from Australian Research Council,
computing resources are provided through the Key Centre of Design Com-
puting.

References

1] Liggett, R.S.: 1985, Optimal spatial arrangement as a quadratic assign-
ment problem, in Gero, J. S. (ed.), Design Optimization, Academic Press,
New York: 1-40.

2] Kirkpatrick, S., Gelatt, C. G. and Vecchi, M. 1983: Optimization by
simulated annealing, Science 220 (4598): 671-680.

3] Holland, J. 1975: Adaptation in Natural and Artificial Systems, Univer-
sity of Michigan, Ann Arbor.

[4] Jo, J. H. and Gero, J. S. 1995: Space layout planning using an evolution-
ary approach, Architectural Science Review, 36 (1): 37-46.

(5] Wilhelm, M. R. and Ward T.L. 1987: Solving quadratic assignement
problems by simulated annealing, IEE Transactions, 19 (1): 107-119.

6] Gero, J. S. and Kazakov, V. 1995: Evolving building blocks for genetic
algorithms using genetic engineering. Proceedings of the IEEE Conference
on Evolutionary Computing: 340-345.

(7] Muhlenbein, H. and Schlierkamp- Voosen, D. 1994: The science of breed-
ing and its application to the breeder genetic algorithm BGA, Evolutionary
Computation, 1 (4): 335-360.

8] Sankoff, D. and Kruskal, J.B. eds. 1983: Time Warps, String and Macro-
molecules: The Theory and Practice of Sequence Comparison, Addison-
Wesley, Reading, MA.

9] Collins, J.F. and Coulson, A.F.E. 1987: Molecular sequence comparison
and alignment, in Nucleic Acid and Protein Sequence Analysis: A Practical
Approach IRL Press, Washington DC: 323-358.

[10] Schuler, G.D., Altschul S.F. and Lipman D.J. 1991: A workbench for
multiple alignment construction and analysis, in PROTEINS:Structure,
Function, and Genetics, 9: 180-190.

[11] Needleman, S.B. and Wunsch, C.D. 1970 : A general method applicable
to the search for similarities in the amino acid sequence of two proteins,
Journal of Molecular Biology, 48: 443-453.

[12] Karlin, S., Dembo, A., Kawabata, T. 1990: Methods for assessing the
statistical significance of molecular sequence features by using general scor-

25

ing scheme, Proceedings of the National Academy of Science U.S.A., 8T:
5509-5513.

[13] Karlin, S., Dembo, A., Kawabata, T. 1990: Statistical composition of
the high-scoring segments from molecular sequences, Annals of Statistics,
18: 571-581.

[14] Crochemore, M. 1994: Tezt Algorithms, Oxford Univesity Press, New
York.

[15] Harik, G. R., Goldberg, D. E. 1996: Learning Linkage, IlliGAL Report
No. 96006.

[16] Elshafei, A. N. 1977: Hospital layout as a quadratic layout problem,
Operations Research Quarterly, 28: 167-179.

OThis is the copy of the following: Gero, J. S. and Kazakov, V. (1997). Learning and reusing information in space
layout problems using genetic engineering, Artificial Intelligence in Engineering 11(3): 329-334.

26

